Exercice 1:

Soit (E,T) un espace topologique et A et B deux parties de E.

Soit Mun sous-ensemble de E tel que M \subset *A* \cap *B.*

Montrer que si M est ouvert dans A et dans B alors M est ouvert dans $A \cup B$. Même conclusion si M est fermé dans les deux parties.

TD Nº 3

Exercice 2:

Soit E *et* F *deux espaces topologiques,* $A \subseteq E$ *et* $B \subseteq F$. *Montrer que*

$$Fr(A \times B) = (Fr(A) \times \overline{B}) \cup (\overline{A} \times Fr(B))$$

Exercice 3:

Soit $(E_i)_{1 \le i \le n}$ une famille de n espaces topologiques et soit $E = \prod_{1 \le i \le n} E_i$ leur espace topologique produit. Pour tout $i \in \{1, ..., n\}$, soit $A_i \subset E_i$. On pose $A = \prod_{1 \le i \le n} A_i$.

- 1. Montrer que: $\bar{A} = \prod_{1 \le i \le n} \bar{A}_i$ et $\dot{A} = \prod_{1 \le i \le n} \dot{A}_i$.
- 2. Montrer alors qu'un produit $\prod_{1 \le i \le n} A_i$ d'ensembles non vides <u>est</u> fermé dans E si et seulement si pour tout $i \in \{1, ..., n\}$, A_i est fermé dans E_i .

Exercice 4:

Soit E un espace topologique et $(x_n)_n$ une suite de points de E.

- 1. On suppose que la suite $(x_n)_n$ est convergente. Montrer que si E est séparé, alors la limite de $(x_n)_n$ est unique.
- 2. Montrer que $(x_n)_n$ converge vers $x \in E$ si et seulement si les sous-suites $(x_{2n})_n$ et $(x_{2n+1})_n$ convergent vers x.

Exercice 5:

Soit E un ensemble infini. On pose $\mathcal{T} = \{\emptyset\} \cup \{A \subseteq E, \operatorname{card}(E \setminus A) \leq \operatorname{card} \mathbb{N}\}$, où $E \setminus A$ désigne le complémentaire de A dans E.

- 1. Montrer que (E,T)est un espace topologique.
- 2. Montrer que les suites convergentes dans E sont les suites stationnaires.
- 3. Soit A un sous-espace de E et, $(x_n)_n$ une suite de points de A. Montrer que si $(x_n)_n$ converge vers $x \in E$ alors $x \in A$.