Département de Mathématiques 2025/2026 Semestre 3

Exercice 1:

Soit (E, T) un espace topologique et A et B deux parties de E.

On désigne par \dot{A} l'intérieur de A et par \bar{A} l'adhérence de A.

- 1. Montrer que $\dot{A} \in \mathcal{T}$ et que \bar{A} est un fermé.
- 2. Montrer que $\dot{A} \cup \dot{B} \subseteq \overrightarrow{A \cup B}$. Vérifier par un exemple que l'on peut avoir $\dot{A} \cup \dot{B} \neq \overrightarrow{A \cup B}$.

 $TD N^{\circ} 2$

3. Montrer que $\overline{A \cap B} \subseteq \overline{A} \cap \overline{B}$. Vérifier par un exemple que l'on peut avoir $\overline{A \cap B} \neq \overline{A} \cap \overline{B}$.

Exercice 2:

Soit (E,T) un espace topologique et A une partie de E. On désigne par Fr(A) la frontière de A. Montrer les assertions suivantes :

- 1. Fr(A) est un fermé.
- 2. A est un fermé si et seulement si $Fr(A) \subseteq A$.
- 3. $A \in \mathcal{T}$ si et seulement si $Fr(A) \cap A = \emptyset$.
- 4. A est ouvert et fermé si et seulement si $Fr(A) = \emptyset$.
- 5. $Fr(A \cup B) \subset Fr(A) \cup Fr(B)$.

Exercice 3:

Soit A un ensemble de \mathbb{R} tel que \bar{A} est d'intérieur vide, $Int(\bar{A}) = \emptyset$. On dit que A est un ensemble rare.

- 1. Donner un exemple d'ensemble rare de ${\mathbb R}$.
- 2. Montrer que tout intervalle I de \mathbb{R} contient un intervalle U tel que $U \cap A = \emptyset$.

Exercice 4:

Sur $\mathbb N$ on définit l'ensemble des parties suivant :

$$\mathcal{T}_1 = \{\mathbb{N}, \emptyset\} \cup \big\{\{0,1,\dots,n\}: n \in \mathbb{N}\big\}$$

- 1. Montrer que $(\mathbb{N}, \mathcal{T}_1)$ est un espace topologique.
- 2. Déterminer le plus petit ouvert contenant l'entier 1 et $Fr(\{2,3\})$.
- 3. Déterminer les fermés de \mathbb{N} pour la topologie \mathcal{T}_1 .
- 4. Trouver la topologie induite par T_1 sur l'ensemble des entiers impairs.