Département de mathématiques

Année universitaire: 2025 - 2026

Module: Analyse 3 L2 Mathématiques

T.D N°2: Suites et séries de fonctions

Exercice 1

Etudier la convergence simple des suites des fonctions suivantes :

$$f_n(x) = \left(\frac{x^2 + n}{2x^2 + n}\right)^n, \ g_n(x) = \frac{1}{1 + x^2 + x^4 + \dots + x^{2n}}, h_n(x) = \frac{nx^n}{x^{2n} + x^n + 1}, k_n(x) = \frac{x^{4n}}{1 + x^{2n}}$$

Exercice 2

Soit $f_n: [0,+\infty[\to \mathbb{R}, x \mapsto \frac{nx}{1+2nx}, n \in \mathbb{N}^*.$

- (1) Calculer $f(x) = \lim_{n \to +\infty} f_n(x)$. (2) f est-elle continue sur \mathbb{R}^+ ?
- (3) A-t-on la convergence uniforme sur \mathbb{R}^+ ?
- (4) Posons $I = [a, +\infty[$ où a > 0.
- (i) Calculer $\limsup_{n\to+\infty} \sup_{x\in I} |f_n(x)-f(x)|$.
- $(ii) f_n$ converge -t-elle uniformément sur I?

Exercice 3

Déterminer

$$\lim_{n\to+\infty}\int_0^1\frac{ne^x}{n+x}dx.$$

Exercice 4

Soit $f_n: [0,+\infty[\to \mathbb{R}, x \mapsto \frac{\ln(x+n)}{n^2}, n \ge 1.$

- (1) Etudier la convergence simple de la série de fonctions $\sum_{n\geq 1} f_n(x)$. On note $S(x) = \sum_{n=1}^{+\infty} f_n(x)$
- (2) Montrer que S est de classe C^2 sur $[0,+\infty[$ et exprimer pour tout $x\in[0,+\infty[$ S'(x) et S''(x) sous formes de sommes de séries.
- (3) En déduire que S est strictement croissante sur $[0, +\infty[$ et que S est concave sur $[0, +\infty[$.

Exercice 5

On considère la série de fonction $\sum_{n>1} f_n(x)$ où $f_n(x) = \frac{\cos nx}{n^3}$

- (1) Déterminer le domaine de convergence de cette série.
- (2) Montrer que $f(x) = \sum_{n\geq 1} f_n(x)$ est une fonction continue sur son domaine de convergence.

(3) Montrer que
$$\int_{0}^{\frac{\pi}{2}} f(x)dx = \sum_{n\geq 0} \frac{(-1)^n}{(2n+1)^4}.$$

(4) Montrer que
$$\forall x \in \mathbb{R}, f'(x) = -\sum_{n \ge 1} \frac{\sin nx}{n^2}$$

Exercice 6

Soit la série de fonctions de terme général : $u_n(x) = \frac{(-1)^n}{n^x}$, $x \in \mathbb{R}^{+*}$.

- (1) Déterminer le domaine de convergence absolue de cette série.
- (2) Montrer que la série $\sum_{n\geq 1} u_n(x)$ est convergente sur \mathbb{R}^{+*} .
- (3) Déterminer $\sup_{x \in \mathbb{R}} |u_n(x)|$ où $I = [a, +\infty[$ et a > 1.
- (4) $\sum_{n\geq 1} u_n(x)$ est-elle uniformément convergente sur I.

Exercice 7

(1) Montrer que la série $\sum_{n\geq 1} \frac{x}{n^2+x^2}$ converge simplement sur \mathbb{R}^+ et que sa somme et continue,

mais que la convergence n'est pas uniforme sur \mathbb{R}^+ .

(2) Montrer que la série $\sum_{n\geq 1} (-1)^n \frac{x}{n^2+x^2}$ converge uniformément sur \mathbb{R}^+ mais que la convergence n'est pas normale sur \mathbb{R}^+ .

Exercices supplémentaires

Exercice 1

Soit $f_n(x) = x^n(1-x), x \in [0,1], n \ge 1$.

- (1) Montrer que (f_n) converge uniformément sur [0,1].
- (2) Calculer sans intégration $\lim_{n\to+\infty} \int_{0}^{1} x^{n}(1-x)dx$.

Exercice 2

Etudier la convergence uniforme sur \mathbb{R} , de la suite de fonctions définie par :

$$f_n(x) = \frac{1 - nx^2}{nx + 2}, \ n \in \mathbb{N}.$$

Exercice 3

On considère la suite de fonctions $f_n(x) = xe^{-nx^2}$ où $x \in \mathbb{R}$.

- (1) Montrer que la suite de fonctions (f_n) converge uniformément sur \mathbb{R} .
- (2) Pour tout réel $x \in \mathbb{R}$, comparer les quantités $\frac{d}{dx} \left(\lim_{n \to +\infty} f_n(x) \right)$ et $\lim_{n \to +\infty} \frac{d}{dx} (f_n(x))$.
- (3) Que peu-t-on dire sur laconverge uniforme de la suite de fonctions dérivées $(f'_n(x))$?

Exercice 4

Sur [0,1], on définit les deux suites de fonctions (f_n) et (g_n) par les expressions :

$$f_n(x) = (x(1-x))^n + x$$
 et $g_n(x) = (1-x)^n + x$

- (1) Etudier la convergence simple des suites des fonctions (f_n) et (g_n) .
- (2) Montrer que la suite de fonctions (f_n) converge uniformément sur [0,1].
- (3) Montrer que $\forall a \in]0,1[$, la suite de fonctions (g_n) converge uniformément sur [a,1].
- (4) La suite de fonctions (g_n) converge-t-elle uniformément sur [0,1]?

Exercice 5

Trouver le domaine de convergence simple des séries de fonctions suivantes :

$$\sum_{n\geq 1} (\ln(x))^n, \sum_{n\geq 1} \frac{1}{sh(nx)}, \sum_{n\geq 1} \frac{\sin(nx)}{\sqrt{n}}, \sum_{n\geq 1} \frac{x^{4n}}{1+x^{2n}}.$$

Exercice 6

Soit
$$f_n(x) = \frac{x}{(1+x)^n}, x \in \mathbb{R}, n \in \mathbb{N}.$$

- (1) Etudier la convergence simple de la la série de fonctions $\sum_{n\geq 0} f_n(x)$.
- (2) Soit $S(x) = \sum_{n=1}^{+\infty} f_n(x)$. Calculer S(x).
- (3) Montrer que la série $\sum_{n>0} f_n(x)$ ne converge pas uniformément sur $[0,+\infty[$.

Exercice 7

Considèrons la suite de fonctions $f_n(x) = \frac{x}{n(n+x)}, x \in \mathbb{R}^+, n \in \mathbb{N}^*$.

- (1) Montrer que la série de fonctions $\sum_{n\geq 1} f_n(x)$ converge simplement sur \mathbb{R}^+ .
- (2) Montre que $\forall a > 0$, la série de fonctions $\sum_{n \ge 1} f_n(x)$ converge normalement sur [0, a].
- (3) A-t-on la convergence normale sur \mathbb{R}^+ ?
- (4) Etudier la continuité de $f = \sum_{n=1}^{\infty} f_n$ sur \mathbb{R}^+ .

Exercice 8

On considère la suite de fonctions $f_n(x) = \frac{\sin(nx)}{n^3}$, $x \in \mathbb{R}$, $n \in \mathbb{N}^*$.

- (1) Etudier la convergence simple et la convergence normale de la série $\sum_{n\geq 1} f_n(x)$ sur \mathbb{R} .
- (2) En déduire que $f = \sum_{n=1}^{\infty} f_n$ est continue sur \mathbb{R} .
- (3) Etudier la convergence normale de la série $\sum_{n\geq 1} f'_n(x)$ sur \mathbb{R} .
- (4) En déduire que f est dérivable sur $\mathbb R$ et donner f' sous forme d'une série.

Exercice 9

Soit la suite de fonctions $(u_n)_{n\geq 1}$ définie par $u_n(x)=(-1)^n\ln\left(1+\frac{x}{n(1+x)}\right)$ pour $x\geq 0$ et $n\geq 1$.

- (1) Montrer que la série $\sum_{n\geq 1} u_n(x)$ converge simplement sur \mathbb{R}^+ .
- (2) Montrer que la série $\sum_{n\geq 1}^{n\geq 1}u_n(x)$ converge uniformément sur \mathbb{R}^+ .
- (3) La convergence est-elle normale sur \mathbb{R}^+ ?