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Chapter III: Kinematics of material point

Glossary
In English In French In Arabic
Kinematics La cinématique Gl jall
Material point Un point matériel Aale Aty
Reference system Un systéme référentiel PEENGVRNEEY
Velocity (speed) La vitesse de yudl
Acceleration L’accélération & bl
Motion characteristics Caractéristiques d’un A8 all pailad
mouvement
Position vector Vecteur position gl g lads
Time equation/ Hourly Equation horaire e ) Aol
equation
Trajectory Trajectoire Dbl
Trajectory equation Equation de la trajetoire Dbesall Aalas
Velocity vector Vecteur vitesse de pull plad
Acceleration vector Vecteur accélération g obuill g lad
Coordinate systems Systéme de coordonnée Gldlaay) alas

Cartesian coordinates

Coordonnées cartésiennes

i 50,0 Ly

Polar coordinates

Coordonnées polaire

Lpdaall cLglaa )

Cylindrical coordinates

Coordonnées cylindriques

L) gl ElaY)

Spherical coordinates

Coordonnées sphériques

L5 S0 dlay)

Intrinsic coordinates

Coordonnées intrinseques

T el cliiay)

MRU

Rectilinear movement Movement réctiligne Tafiee A< a
Uniform rectilinear movement | Movement réctiligne uniforme | dakiic dainie 4S a

Uniformly varied rectilinear

Movement réctiligne

e&bbwwuﬁ

MCU

movement uniformement vari¢ MRUV
Circular movement Movement circulaire MC LA a
Uniform circular movement Movement circulaire uniforme | dekiiic 43 31248 ja

Uniformly varied circular

movement

Movement circulaire

uniformement vari¢ MCUV

thb)ghgug}\ﬁz\S‘):
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Sinusoidal or harmonic

Mouvement sinusoidal ou

4@ 55 ol A 4S a

movement harmonique

A frame Un referential e g alza
The equation of motion Equation de mouvement A8 jall Adalas

A mobile Un mobile & e
Average velocity La vitesse moyenne dau giall de )
Instantaneous velocity La vitesse instantanée Alaall) de )
Average acceleration L’accélération moyenne Lo giall ¢l
Instantaneous acceleration L’accélération instantanée sl g )

The orthonormal coordinate

Un systeme de coordonnées

2alaial) Sllaay) alas

system orthogonal

The Frenet frame Le repére de Frenet / triedre de | Jd al=s
Frenet.

The moving point Un point en movement A< ja Alls Aol Aass

The normal acceleration L’accélération normal =Bl g bl

tangential acceleration L’accélération tangentielle leal) & Ll

Motion Le Mouvement a8

Weight Le poids 053

Linear velocity La vitesse linéaire Agladll de Ll

Angular velocity La vitesse angulaire A W A )

Linear Acceleration L’accélération linéaire el g bl

Angular Acceleration L’accélération angulaire @9 & bl

Acceleration of gravity Accélération de pesanteur el g ol

Height La hauteur gy

The period of a pendulum La periode d’une pendule Japn (8 50
simple

The sound Le son < pual)

Radius Le rayon kil Caal

The abscissa L’abscisse Al

Radius of curvature Le rayon de courbure il Ll Hlad Caial

The right triangle Un triangle droit 8 il

Amplitude Amplitude Aol

Frequency Fréquence sl

Average speed La vitesse moyenne dau sidl Ayl
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Instantaneous speed

La vitesse instantanée

ezall) de )
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Chapter III: Kinematics of material point

1. Introduction

The theory of General Relativity invented by A. Einstein in 1915 is a relativistic theory of
gravitation. This theory challenges the idea of an inert Euclidean space, independent of its
material content. Kinematics studies the movement of a material point independently of the
causes that give rise to it. It is based on a Euclidean description of space and absolute time. The
material point is any material body whose dimensions are theoretically zero and practically
negligible in relation to the distance it travels. The state of movement or rest of a body is two
essentially relative notions: for example, a mountain is at rest in relation to the earth, but in
movement in relation to an observer looking at the earth from afar, for whom the globe (with
all that it contains) is in perpetual movement. In this course, we illustrate the notions of velocity

and acceleration by restricting ourselves to movements in the plane.

2. Reference Systemg

The concept of motion is relative. A body can be in motion with respect to one object and at
rest with respect to another (relative motion), hence the necessity of choosing a reference frame.
A reference frame is a system of coordinate axes linked to an observer.

This study of motion is carried out in two forms:

. o, . —_ . - . -
- Vectorial: using vectors: position OM, velocity v, and acceleration a.

- Algebraic: by defining the equation of motion along a given trajectory.

3. Characteristics of a movement

3.1. Vector position and time equationdS all 4:ia 3l dalaall 5 2l gall glad

We define the position of a material point M in a reference frame by the position vector OM,
where O is a fixed point and serves as the origin of the reference frame. The components of
point M or the vector OM are given in the chosen coordinate system's basis (Cartesian
coordinates, polar coordinates, etc.).

The point M moves through time, and this movement is described by an equation known as the

"time equation" (&) 4alxx), translated as the "time equation."

3.2.Trajectory il
The trajectory is the geometric path of successive positions occupied by the material point over

time with respect to the considered reference system.
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Example:
The position of a material point M identified by its coordinates (X, y, z) at time t in a coordinate

system R(O,Z, J,k) with a position vector:

. t2
OM = (t — 1)?+?j

2 x=t—1
OM:(t—].)?-F?]_) = _ﬁ

Y732
So t=x+1
The trajectory equation of the material point is

_ (x+1)?
==

3.3. Velocity vector 4 yull glad
Consider a mobile that is located at position M(t) at time t, and it evolves at the point M’ (t+At)

at instant(t+At).

-

U = lim '_t:}MMJ

M)

'_U\’l[f'-.l’

trajectoire
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The average velocity 4w siall = .l between the two instants t and t+At is called:
MM’ MM’
v = =
moY - (t4+At)—t At

e If the time interval At is very small (At—0), we then refer to it as instantaneous

velocity 4paalll dc jull;

!
V= limv = lim M
At—0 OV Ats0 At

MM' = MO + OM' = OM' — OM = AOM
So:

3.4. Acceleration vector g _tudll glad
When velocity varies over time v=f(t), point M is subjected to an acceleration.

M AT M
@y = lim =29

At AT , ,
trajectoire

e The average accelerationfw siel/ £ Luill is written:

U+ A —v()  AV(D)
Gmoy ="ty Aan—t At

® When the time is very small At — 0 instantaneous acceleration (=l & _Luil is written
by :
. AOM
a= lim ——
At-0 At

dv(t) d?’OM
dt  dt?

=>a=
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4. Expression of velocity and acceleration in different coordinate systems

To solve a problem in physics, we must locate the position of the moving point M in space
OM (t).

The position must be located from a frame of reference (reference), we are required to choose
the appropriate reference to use it according to the problem we want to solve

Generally, we use Cartesian, Polar, Cylindrical or Spherical coordinates
4.1 Cartesian coordinates

Let the frame be R(O,x,y,z) with the unit vectors 7, ] and k. With x,y and z are the coordinates

A
of point M which gives its position in space. Z

They are also the vector componentsm.

x: abscissa; y: ordinate and z: height ~. M

m is the projection of point M in the plane (Oxy)

v~

e Vecteur position

—_—

OM = xT+yj + zk

The unit vectors 1,] et k constitute a basis linked to the axes (Ox), (Oy) and (Oz)

e FElementary displacement

The elementary displacement dl:

Next (Ox) the displacement is written dx
Next (Oy) the displacement is written dy

Next (Oz) the displacement is written dz

By fixing y and z, M moves along 7, the elementary displacement is then written dTl = dxT.
By fixing x and z, M moves along J, the elementary movement is then written d—lz) = dyJ.

By fixing x and y, M moves along E, the elementary displacement is then written d_l3) = dzk.
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The total displacement of point M is:
di = dl, +dl, + dl; = dxi + dyj + dzk

Or mathematically :

B

OM = xi + y] + zk = dOM = dxi + dyj + dzk
The elementary volume dV=dl,.dl,.dl3=dx.dy.dz

e Velocity vector

( _dx

_ Vs =t

, dOM dx, dy, dz- dy
v —-—:iz— —-:izl +';izj +'aﬁ;k =< vy ::-(iZ
_dz

ka_E

The velocity module is written: |¥| = \/vZ + vZ + v2

Note: The magnitude of the velocity, equal to |v|, is called the speed. In S.I. units, v is

expressed in (m/s) or (m.s™").
e Acceleration vector:

dv d?x
for =22

dt ~ dt?

av  d?oM dv a2
C_i = —= =13, = -y = _y
dt dt? y dt dt?
_dv, _ d*z

a = —
z dt dt?

The acceleration module is written:
ld| = [aZ+ a2+ aZ

The unit of acceleration in S.I units is (m/s?) or (m.s ).
4.2. Polar coordinates 4udadll cilifaay)

When the motion is in a plane, it's also possible to locate the position of point M using its polar

coordinates (p, 0).
p: polar radius p =|W| (0£p<R)
0: polar angle 6=(ox, W) (0<6<2m)
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Chapter III: Kinematics of material point

Let's consider point M moving in space, identified by its polar coordinates (p, 0) in the

orthonormal coordinate system (OXY) with unit vectors u,, Ug.

yA
Y X
M
)0 S .
P T
i1 i
O XM X

e Position Vector

—

The position vector of a material point M in polar coordinates is written: ¥ = OM = pl7r

The unit vectors l_fr is following OM and 179 is perpendicular to l_fr (l_jr 1 (_jg).

Transit relations between cartesian coordinates and polar coordinates

A
We project the point M into the plane (Oxy) y

{xM = |0OM|cos6 = pcoso Y

yu = |OM|sin® = psin8 M
A

oM = Xyl + yuj = OM/cart = pcosOT + psinBj e >
O X

OM /pol = pU, and OM/cart = p(cos6i + sin))
By identification:  u, = cosO71 + sin6j
Rule: Note: The derivative of a unit vector with respect to an angle is a unit vector

perpendicular to the angle in the positive direction.

< gall bl@ﬁ‘z’\‘",é),)i‘ﬂ K $a5as Baa g plad (A :\ﬁ‘g\}\‘_’leQSh‘ggmm

The vector ug L u, in the direction of 6 which corresponds to the direct direction therefore

ug =
T

So ug = —sind1 + cosOj
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By projecting the unit vectors we will have the same results

Ay
YO o
i We) w,
i U_) f A i
Y 0 ;
x(Up) 0O 5 x(Uy) X

uy = x(u)T+ y ()] = Uy = [u7|cosbi + [u;|sin6]

with |u,]| = 1 since it is a unit vector therefore u, = 1cosO1 + 1sin6)

ug = x(ug)l + y(ug)j = ug = —|ug|sindi + |ugy|cos6y
with |ug| = 1 since it is a unit vector therefore ug = —sinO1 + cosOy

To write the unit vectors u, and ug as a function of 7 and J we use the passage table

- -
l ]

u, cosf sinf

Uug - sinf cosb

1= cos Ou, — sinBuy and 7= sin Ou, + cosOug
Example :

Write the vector A = 2xT + yJ

{x = p cosO {T = cos Ou, — sinBuy
y = p sind ] = sin 0u; + cosOuy

So A = 2 p cos (cos 0, — sinbug) + p sinb (sin O, + cosOug)

= A = 2 p cos?6u; — 2p(cos Bsin®)ug + p sin?6 u, + p(sin O cosO)ugy

{

= A = p (2c0s%6 + sin*0)u,; — p(cos Osin®)ugy

= A = (pcos?6 + 1)u, — p(cos Osin®)ug
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Chapter III: Kinematics of material point

¢ Elementary displacement
The variables p and 0 are independent: we fix one and change the other
- We fix 0, and we change p, then the moving point moves from the point M(p, 0) to the
point M’(p+dp, 0)
dl, = MM’ = dpw;

- We fix p, and we change 0, then the moving point moves from the point M(p, 0) to the

point M’(p, 6+d 0) y 4 M M’
The angle 0 varies by d0, causing a linear dl, e
1
displacement of point M towards point M" 0
Us . (MM” L 5) 5
In the right triangle OMM*’, MM”’ = psin6d®. v\j“ Lo
Since d0 is very small, we can approximate Us o » :X
7
Sin(d0) as d6.

Therefore, MM’ = pd#, so
dl, = MM" = pdfug

SO

_ —

dl = dl, + dl, = dpu, + pdOug
We can obtain the same result mathematically:
OM = pl_fr = dOM = dpl_fr + pdﬁr

To make the derivative of a unit vector dl_jr, we must bring out the derivative with respect to

an angle % for this we multiply and divide by dO

_  dU, _
dUu, = 70 df = UydB

y A dS

With ©* =Ty so dOM = dpU, + p d6 Uy dl, #
1
Calculation of the surface: 0 M
e — p

ds = |dly|.|dL| =dp.pd9:>s=ﬂdp.pd9 N A

J 0
We can separate the variables since they are independent (4 - =X
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Chapter III: Kinematics of material point

s = fOdep.fozndH = R;Zn

with p varies from 0 to R and 0 varies from 0 to 21 = s = mR?

e Velocity vector

dOM _dp . dU,

V= =—U, +
ar dt " P Tar

avu, dU,dé®  dU, do
have:Zr = &&r &7 _ 2%r &Y
We have dt dt d6  de dt

dU, — alv, do = doM dp = do =

: = Uy donc =—U so vV=—=—1U —U

do 6 dt 6 ac - acr TP Ve

i de

= =pU, + p0-Uywith p = —tand 0 ==

e Acceleration vector

- dv  d*0M d?p = dp dUr dp ae = de dUg
dt dt? t2 dt dt dt ac 8 'D 9 P ar dt dt

L d%p - +dpd0q +dpd9l_j dzeﬁ (d9>2l7
= = — _— — J—
CCaertawa e T arar e tPae Ve P ) U
.1 . dUr lg _
With : o = Uget—de =-U,

So: d= p"l_])r + 2p'0'l79 + p0"l_f)9 - p(9')zl_])r

4.3. Cylindrical Coordinates ALl ghuly) clidlaay)

If the spatial trajectory involves p and z playing a specific role in determining the position

vector (W); for example, the movement of air molecules in a whirlwind; it is preferable to use
cylindrical coordinates (p, 0, z). With:
p: polar radius
0: polar angle
z: altitude or height

p= |W|, 0<p<R
and| g = ((ox),Wn)),O <0<2m

z=2zy, 0<z<H

Where m is the projection of point M onto the plane (Oxy), and R is the radius of the cylinder,
and H is the height of the cylinder.
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Chapter III: Kinematics of material point

If we add the 'z' component to polar coordinates in space, we obtain what is known as cylindrical
coordinates. Consider R(Oxyz) and a point M belonging to a cylinder.

Point M is identified by three coordinates p, 0 (polar coordinates), and z.

e Position vector

The position vector in cylindrical coordinates (p, 6, z) in the orthonormal frame

R'(0,u,, ug, uy) is written:

7 = OM = Om + mM (Relation de Charles)
om = pu, (Coordonnées polaires) =>7=0M = pu, + zu,
mM = zu, (hauteur du cylindre)
e Unit vectors
The unit vectors ﬁp is following om (m is the projection of the point M on the plane (Oxy))
and l_jg is perpendicular to l_ir and Om in the direction of 0 (ﬁp 1 ﬁg) and l_fz is following
(O2), (ﬁz [ E)) and it is perpendicular to the plane formed by the two other unit vectors (l_fp and

Uy).

Transit relations between cylindrical coordinates and Cartesian coordinates:

By projecting the point m onto the axes (Ox) and (Oy) (like polar coordinates) z is the height

X = p cos6
y=psinb
z=12z
oM Cylm=0m+mM=p@+zu_’z
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M/cart =xl+y/+ zk

OM/cart = p (cosO T+ sin ) + zk

By identification
u, =cosfT+sinfj
— du—> . 9 —>+ 9 -
Ug = o = —sinfi+cos 0
u; =k
. X u,
Using the passage table : 0
U J k
u, Cosf Sin6 0
Ug - sinf Cosb 0
u, 0 0 1

1= cos Ou, — sinBugy
] = sin 0w, + cosbug and k=1,
¢ FElementary displacement
The variables p, 0 and z are independent: we fix one and change the other

- We fix 0, z and we change p, then the moving point moves from the point M(p, 0,z) to
the point M’(p+dp, 0,z)
dl, = MM’ = dpii,
- We fix p, z and we change 6, then the moving point moves from the point M(p, 0,z) to

the point M’(p, 6+d 0,z)

The angle 0 varies by d0, this leads to a linear movement from point M towards point M"

following U, , (W I u_g))

In the right triangle OMM’’, MM’ =p sindf

dO is so small then sin d0~=d0.

Then MM"=pd0 therefore ~ dl, = MM" = pd6ug

Z.HADJOU BELADD 67



Chapter III: Kinematics of material point

- We fix p, 6 and we change z, then the moving point moves from the point M(p, 0,z) to

the point M’”’(p, 0,z+dz)

dl; = MM'" = dzu;,

So
dl = dl; + dl, + dl; = dpw, + pdoug + dzu;

We can obtain the same result mathematically
OM = pu, + zu, = dOM = dpl_fp + pdl_])p + dzu,+ zdu,

5
du, = 0 car u, = k it's a vector fix.

L dU, _
dUp = W dg = Ugd@
With =2 =T, so dOM = dpU, + p d6Uq + dzii;
e The cylinder volume
dv = |dl|. |dL;|. |dl5| = dp. pd6.dz =V = fﬂ dp. pdo dz

We can separate the variables since they are independent

2
V=) pdp. [77a0 [y dz =" 2nH =V = nR*H

(with p varies from 0 to R and 0 varies from 0 to 2w and z varies from 0 to H)
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e The surface of the base of cylinder
dspase = |dly].|dLz| = dp.pd6 = spase = [[ dp. pdb
We can separate the variables since they are independent
s = fOR pdp.fozn do = R;Zn = Spase = TR?
e The lateral surface of cylinder

dsiqr = |dIy|.|dl5| = dp.pd8 = spqse = [[ pdf.dz

The radius is constant p=R, the variables are independent so we can separate them

21
s = Rf d@.f dz = R2nH = s,,,, = 2nRH
0 0

e Velocity vector

e . . — _dOM _ dp = dau, du.
The velocity in this case is written by: v = ek d—i U-+p t’" + U +z

dU, dU,do dU,do

dt  dt d6  df dt

— avu, do =
:Ug S L

av, =
ac Vo and 5-=0
é_dOM_dpl7 N dé?l7 +le_f
V=0 T ar Pae " at
>V=pU.+p0U,+2zU,
With: p'=%,0'=z—z and Z'=%

e Acceleration vector

ds  d?oM

5 2p = dder dpde d6 dly | d*z | dzdl,
a=3 = Tae _d_U dt dt dtdtU9+'D U9+'Ddt dt +FU +E dt
R dzpl_j +dpd9_> +dpd6?l7 N a‘tzel7 <d9)2ﬁ +a12zl7
= = — _— _ _— — J— JRE—
T T ardr 0 T arar 0 TP az e TP \ar) Ut aee e
. Uy _ av, =
With = Ug,ﬁ Ur and : 0

= d=p-U +2p6Uy+ p0-Ug — p(6)2U, + z°U,
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Chapter III: Kinematics of material point

4.4. Spherical coordinates < s </ <Ll Y/
When the point O and the distance r separating M and O play a characteristic role, the use of

spherical coordinates (r,0,) are the best suited in the orthonormed base (u;, Ug, U,) With:

( r=|W|,O<r<R
9=((ox),Wn’) 0< 6<2m
(p=((oz),m) 0< p<m

With m is the projection of M in the plane (Oxy).

e Position Vector :

The position vector in spherical coordinates (r,0,) is written as: ¥ = OM = rU,

e The unit vectors
The unit vectors l_fr is following OM and l_f,p is perpendicular to l_fr and OM in the direction

of ¢ (l7¢ 1 ﬁr) and l_jg is perpendicular to om (l_ig 1 W).

Transit relations between spherical coordinates and Cartesian coordinates

By projecting m onto the axes (Ox) and (Oy)

X = |Wn)| cos@ M
y = |Om| sin6 0
z= |W| I

By taking the right triangle (OmM):

51

Z. HADJOU BELAID O 70




Chapter III: Kinematics of material point

We have Om=r singp and mM=r cos@, replacing them

in passing relationships we will have:

X =1 sing cosf
y =rsing sin6
Z=T1CoS¢Q
oM sph — Uy

M/cart = 7 sing cosOT + 1 sing sin 6] +rcos@k
M/cart =1 ( sing cosfT + sing sin 6] + cos ¢ E)

By identification

— .

U, = sing cosOT + sing sin 0 + cos ¢ k

—  —-dU, du, > P ?
u, = = = cos@ cosOT+ cos @ sinf] —sinp k
9= aCe)  do ¢ ¢ smby—sme

—

Ug = U,AU, = |sing cosf sing sinf  cos@
cos@ cos cos @ sin@ —sing

= 1(—sin?p sin O — cos 2¢ sin 0) — j(—sin?¢ cosh — cos?¢ cosh)

+ E(sin(p cosfcos @ sin 0 — sing sin 6cose cosH)

Uy = —sin 07 + cos6]
By using the pasage table :
U J k
u, sing cosO sing sin 6 CoS @
u_(,; cose cos6O cos ¢ sin @ -sin ¢
Uy —sinf cosf 1
U= sing cosf u, + cosp cosf u, —sin O u,
j = sing sinf u; + cose sinb u, + cos 6 ug

k = cosp u, — sing u,

¢ Elementary displacement

The variables r, ¢ and 0 are independent: we fix one and change the other:

- We fix 9,0 and we change r, then the moving point moves from the point M(r, ¢,0) to
the point M’(r+dr, ¢,0) so dl, = MM’ = dru,
- We fix r, 8 and we change ¢, then the moving point moves from the point M(r, ¢ ,0) to

the point M”’(r, , +do ,0)
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The angle ¢ varies by do, this leads to a linear movement from point M towards point M"

following U_(p) , (MM" 1 u_(p’)
In the right triangle OMM’’, MM”’= r.sind@

do is so small then sin dp=d¢
then MM"=r.dg therefore dl, = MM = r d¢ Uy,

- We fix r, ¢ and we change 0, then the moving point moves from the point M(r, ¢, 0) to
the point M”’(r, ¢, 6+d0)

The angle ¢ varies by do, this leads to a linear displacement of the point m (projection of the
point M in the plane (Oxy)) towards the following point m' U—g) , (mm’ 1 ﬂ)

In the right triangle Omm’, mm’= Om.sind0

do is so small then sin d6~d6
So mm’=Omd® and Om=r sing therefore  dl, = mm’ = rsing d6 u,

dOM = dru, + rdou, + rsing db ug

Or mathematically :

OM = rwi dOM = d(rw) = drw+ rdw
— 0dU, au,

—

U, = sing cos0T + sing sin 0] + cosgk
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Chapter III: Kinematics of material point

6U
20 = —sing sindi + sing cos 9] = sin <p( sinbi + cos 9])
6U N
=>——=13sin
50 PUg
U, , , .
= cos cosOi + cose sin B — sinpk
6U T
6<p ¢

dOM = drU, + rdpU, + rsinpddU,

e Volume of sphere

dV=dl,dl.dls=dr r sing d0 r de=V = [[[ r?drsin ¢ d¢ db

R T 2 7'3
>V = f rzdrj singof do =—l (— cos@)] 6]
0 0 0 3

V=2 np?
=>V=cz-nr
3
e Velocity vector
The velocity vector is written in spherical coordinates (1,0,¢) by:
dOM dr — d

3 U, +r=20, + 497
V=4t dc "t rsm(pd_ 0

4.5. Intrinsic coordinates (Frenet frame) 4siaiall 4 al) cifiaa)
We used to work in a fixed frame, but in this case, we study the motion in a moving frame that

travels with the moving point "M". This frame is the Frenet frame.
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Chapter III: Kinematics of material point

We study the motion in the Frenet frame:

The Frenet frame is a two-dimensional reference frame.

- U is the unit vector along the tangent to the trajectory.

- 11 is the unit vector normal to the trajectory and perpendicular to U, directed towards the center
of curvature.

- The position remains unchanged (the frame moves with point M).

- The velocity vector is tangent to the trajectory, and it is written as: U= |§|ﬁ)

- The acceleration vector :

dv dlﬁlu d|v|

-

=T Tar T ar @ +1v l_
di du dH_Q o L, du 4 _de
Gt = ag qr - bewith fi=—pandw = o

The acceleration vector is written by: d = ari + ayil

dlvl

So: da=—1u+|v|.7n

(the perimeter of a circle (5.924a0)1 = 21R, for the length of a segment (w58 Jsb)
x = OR ; from angular velocity to linear velocity by % =R Z—f = v = Rw)

Hence:

w = % with R is the radius of the curvature of the trajectory.

- dlv Z—)
So a= ||u+ —n
dt R

The normal acceleration (<bWl ¢ jLadll) and tangential acceleration (ustasll g JLudll) are written

dalv|

ar = ——

by : at

; v

N g
|Ei|=\/a,zc+ay—\/aN+aT

e R —oo : so the trajectory is a line .

e R is constant: so the trajectory is circular.
5. Study of some movements

5.1. Rectilinear motion 4zai 4s

We have linear motion if the trajectory is a straight line.
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Chapter III: Kinematics of material point

We choose a point O as the origin on the trajectory and a unit vector 7 .
The position of the mobile M, as a function of time, is identified by its abscissa:
x(t) = OM(t).

The position vector will be:r(t) = OM(t) = x(t)7

5.1.1. Uniform rectilinear motion 4akiia 4aidive 4< o URM

We have uniform rectilinear motion if the trajectory is a straight line and the velocity vector is

_—

constant. This is a motion with zero acceleration a(t) = 0.

The 1nitial conditions to t=0 ; x=xo.
o The velocity

dv v t
a=—=0:>f dvzfo.dtzcte
dt v 0
0

So v=vp=cte

o The position

dx x t
v=—=v0:>f dxzfvodtz[vot]f):vot
dt %o 0

So : x=vot+xg This is the hourly equation of the motion. URM

5.1.2. Uniformly varied rectilinear motion aWiils 5 e 4aiiivis 4 & UVRM

One has a uniformly varied rectilinear movement if the trajectory is a straight and the

acceleration is constant.
The initial conditions to t=0 ; v=vgpand x=xo

o The velocity

Sov=aptt+vy

e The position

_dx
T dt

x t 1 t
v = aot + Vg :>f dx =f (apt + vy)dt = [antz +v0t]
0

X0 0

1
Sox = ;%o t? + Vot + X this is the hourly equation of the motion UVRM
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Chapter III: Kinematics of material point

5.2. Circular motion 4 52 4 a
Circular motion is plane motion with constant radius of curvature p=R. The trajectory of the

moving object is a circle of radius R .

o The position
The moving point travels from point I to point M, thus the trajectory forms an arcIM.

By considering an elementary displacement of the moving point from point I to point m, we

would have a displacement in the form of an elementary arc Im.

In the right triangle OIm, /m=R sin@

In the right triangle. If 0 is so small thensinf = 6.

So I'm=R.0
o The speed
_dim 29
VST T

R is constant, the speed is following the trajectory, so it is written ¥ = v so the vector U would

be following the tangent.

d ) PR
b = 0 = w is the angular velocity 49\ 3 4 )

=
daeo

Vv=R—=R.0 =R.w
dt

Note: The relationship between linear velocity and angular velocity is: Vv = Rw

e The acceleration

S_ AP _dv_ di
T Tt 4
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Chapter III: Kinematics of material point

du _ dudo . di _
—=——Wwith —=n
dt  do dt de

with(uU, 1) the unit vectors in the Fresnet farme and ?®_w
( dt

5.2.1. Uniforme circular motionieiia 4, ,ila 4S o

In this case the angular velocity o is constant and therefore the linear velocity v is also constant,
thenar =0.

n

|

The acceleration in this case is :d = ay =

5.2.2. Uniformly variable circular motion AUl 8 yi%a 4y 33 4S &
In this case the angular velocity ® is not constant and therefore the velocity v is not constant
also, then d = a;u + ayfi.
. . . . - dv - Vz — dw — 2=
The acceleration in this case is: a = Sutn =R —ut Rw*n
5.3. Sinusoidal or harmonic motion 4z 45 A

The movement is called sinusoidal or harmonic if its evolution over time is written by the
equation:

x(t) = Asin(wt + @)

A: amplitude, ®: angular frequency, and ¢: phase.

2m 5
w=—=27
T f
T: period and f: frequency
o The speed
dx(t
v(t) = & = Aw cos(wt + @)
dt
o The acceleration
dv(t) d?x(t d?x(t
a(t) = ()= ()=—szsin(wt+(p):>a(t)= ()=—w2x(t)

dt dt? dt?
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Chapter III: Kinematics of material point

Note:

Another type of movement which is relative movement will be detailed in the
next chapter.
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