1ST YEAR LMD-MATHEMATICS COURSE OF MECHANICS OF THE MATERIAL POINT

Academic year: 2025/2026

Mathematical reminder on vector analysis

Prepared by: Ms_Hadjou Belaid Zakia

Summary

1. Introduction	• • • • • • • • • • • • • • • • • • • •	3
2. Definition of vector	•••••	3
3. Vector types		3
4. Unit Vector		4
5. Algebraic measurement		
6. Components of a vector		
7. Elementary operations on vectors		
7.1. Vector addition		5
7.2. Subtracting two vectors	•••••	6
7.3. Product of a vector and a scalar		6
8. Product		6
8.1. Scalar product		6
8.2. Vector product	• • • • • • • • • • • • • • • • • • • •	7
8.3. Mixed product		
9. Derivative of vector		
References		

1. Introduction

Vectors are fundamental mathematical entities used to represent quantities that have both magnitude and direction. Unlike scalars, which only have magnitude (e.g., distance, time, temperature), vectors provide a more comprehensive description of physical quantities by including information about their orientation or direction.

In other words, in physics, two types of quantities are used: scalar quantities and vector quantities:

- Scalar quantity المقدار السلمي: defined by a number (a scalar) and an appropriate unit such as: volume, mass, temperature, time ...
- Vector quantity المقدار الشعاعي: this is a quantity defined by a scalar, a unit and a direction such as: Displacement vector, velocity \vec{v} , weight \vec{p} , electric field ...

2. Definition

Vectors are physical or mathematical quantities carrying two properties: magnitude and direction. It is an oriented segment. Symbolically, a vector is usually represented by an arrow.

- Origin (المبدأ): presents the point of application "A".
- Support (الحامل): the straight line that carries the vector (Δ) .
- Direction (الاتجاه): Vectors have a specific direction or orientation in space, often indicated by angles or coordinate systems (from A to B).
- Modulus (الطويلة): The size or length of a vector represents its magnitude. This is typically represented by a positive numerical value gives the algebraic value of the vector \overrightarrow{AB} noted.

3. Vector types

- Free vector: the origin is not fixed.
- **Sliding vector:** the support is fixed, but the origin is not.
- Linked vectors: the origin is fixed.

• **Equal vectors**: if they have the same direction, the same support or parallel supports and the same modulus.

• **Opposite vector:** if they have the same support or parallel supports, the same modulus but the direction is opposite.

4. Unit Vector شعاع الوحدة

A vector is said to be unitary if its modulus is equal to 1.

We write: $|\vec{u}|=1$ and $\vec{V} = |\vec{V}|\vec{u}$

5. Algebraic measurement

Consider an axis (Δ) bearing points O and A. O is the origin, and the abscissa of point A is the algebraic measure of the vector \overrightarrow{OA} .

6. Components of a vector مركبات شعاع

The coordinates of a vector in space, represented in an orthonormal base frame $R(O, \vec{\imath}, \vec{\jmath}, \vec{k})$ are : V_x , V_y et V_z such that:

$$\vec{V} = V_x \vec{\imath} + V_y \vec{\jmath} + V_z \vec{k}$$

Where a **position vector** $\vec{V} = \overrightarrow{OM}$ is a vector used to determine the position of a point M in space, relative to a fixed reference point O which, typically, is chosen to be the origin of our coordinate system.

The modulus of the vector \vec{V} is : $V = \sqrt{V_x^2 + V_y^2 + V_z^2}$

In cartesian coordinates, a vector is written as:

$$\vec{V} = x\vec{\imath} + y\vec{\jmath} + z\vec{k} \implies V = \|\vec{V}\| = \sqrt{x^2 + y^2 + z^2}$$

7. Elementary operations on vectors

7.1. Vector addition

The sum of two vectors \vec{A} and \vec{B} is \vec{w} , obtained using the parallelogram:

$$\vec{A} + \vec{B} = \vec{w}$$

Let two vectors \vec{A} and \vec{B} : $\vec{A} = x\vec{i} + y\vec{j} + z\vec{k}$ and $\vec{B} = x'\vec{i} + y'\vec{j} + z'\vec{k}$

$$\vec{A} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
 and $\vec{B} \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix}$ so $\vec{A} + \vec{B} = \vec{w} = (x + x')\vec{i} + (y + y')\vec{j} + (z + z')\vec{k}$

Note:

1. For several vectors: $\vec{A} + \vec{B} + \vec{C} + \vec{D} = \vec{R}$

2. Properties:

$$\vec{A} + \vec{B} = \vec{B} + \vec{A}$$
, $(\vec{A} + \vec{B}) + \vec{C} = \vec{A} + (\vec{B} + \vec{C})$, $\vec{A} - \vec{B} = \vec{A} + (-\vec{B})$

3. Charles relationship:

Or the three points: A, B and C, we have: $\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$

7.2. Subtracting two vectors

This is an anticommutative operation such that: $\overrightarrow{W} = \overrightarrow{A} - \overrightarrow{B} = \overrightarrow{A} + (-\overrightarrow{B})$

Let two vectors: \vec{A} and \vec{B} , $\vec{A} = x\vec{i} + y\vec{j} + z\vec{k}$ et $\vec{B} = x'\vec{i} + y'\vec{j} + z'\vec{k}$

$$\vec{A} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
 and $\vec{B} \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix}$ so $\vec{A} - \vec{B} = \vec{w} = (x - x')\vec{i} + (y - y')\vec{j} + (z - z')\vec{k}$

7.3. Product of a vector and a scalar

The product of a vector \vec{v} by a scalar α is the vector $\alpha \vec{v}$, this vector has the same support as \vec{v} .

The two vectors $(\vec{v} \text{ and } \alpha \vec{v})$ have the same direction if $\alpha > 0$ and they are opposite supports if $\alpha < 0$.

$$\alpha \vec{v} = \alpha \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \alpha x \vec{i} + \alpha y \vec{j} + \alpha z \vec{k}$$

Notes: $[\alpha \vec{v}] = |\alpha| |\vec{v}|, \ \alpha(\vec{u} + \vec{v}) = \alpha \vec{u} + \alpha \vec{v} \text{ and } (\alpha + \beta) \vec{u} = \alpha \vec{u} + \beta \vec{u}$

8. Products

8.1. Scalar product الجداء السلمي

Given two vectors \overrightarrow{A} and \overrightarrow{B} making an angle θ between them, the scalar product \overrightarrow{A} . $\overrightarrow{B} = m$ with \mathbf{m} is a scalar such that:

$$\overrightarrow{A}.\overrightarrow{B} = m = |\overrightarrow{A}|.|\overrightarrow{B}|\cos(\overrightarrow{A},\overrightarrow{B})$$

With :
$$(\widehat{\vec{A}, \vec{B}}) = \theta$$

Note: The properties of the scalar product are:

- The scalar product is commutative $\vec{A} \cdot \vec{B} = \vec{B} \cdot \vec{A}$
- The scalar product isn't associative $\overrightarrow{V_1}$. $(\overrightarrow{V_2}, \overrightarrow{V_3})$, doesn't exist, because the result would be a vector.
- $\vec{A} \cdot \vec{B} = 0$ when both vectors are perpondicular $(\vec{A} \perp \vec{B})$.
- If $\vec{A} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ and $\vec{B} \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix}$ so $\vec{A} \cdot \vec{B} = x \cdot x' + y \cdot y' + z \cdot z'$

الجداء الشعاعي 8.2. Vector product

The vector product of two vectors \overrightarrow{A} and \overrightarrow{B} is a vector \overrightarrow{C} and is written as:

$$\vec{C} = \vec{A} \Lambda \vec{B}$$

To calculate the vector product of two vectors $\vec{A} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ and $\vec{B} \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix}$ we have:

$$\vec{A} \Lambda \vec{B} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ x & y & z \\ x' & y' & z' \end{vmatrix} = \vec{i} \begin{vmatrix} y & z \\ y & z' \end{vmatrix} - \vec{j} \begin{vmatrix} x & z \\ x' & z' \end{vmatrix} + \vec{k} \begin{vmatrix} x & y \\ x' & y' \end{vmatrix} = \vec{C}$$

$$\vec{A}\Lambda \vec{B} = \vec{\iota}(yz' - zy') - \vec{\jmath}(xz' - zx') + \vec{k}(xy' - yx') = \vec{C}$$

So the modulus of the vector product can be given by another method such as:

$$W = \sqrt{(yz' - zy')^2 + (xz' - zx')^2 + (xy' - yx')^2}$$

Characteristics of vector \vec{C} :

The support: \vec{C} is perpondicular to the plane formed by the two vectors \vec{A} and \vec{B} .

The direction: the three vectors \vec{A} , \vec{B} and \vec{C} form a direct trihedron. The direction is given by the rule of the three fingers of the right hand.

The modulus:

$$|\vec{C}| = |\vec{A}| \cdot |\vec{B}| \sin(\vec{A}, \vec{B})$$

The modulus of the vector product corresponds to the area (the surface مساحة) of the parallelogram (مساحة) formed by the two vectors \vec{A} and \vec{B} .

Example:

In an orthonormal Cartesian coordinate base $(\vec{i}, \vec{j}, \vec{k})$:

$$\vec{i} \wedge \vec{j} = \vec{k}$$
, $\vec{j} \wedge \vec{k} = \vec{i}$ et $\vec{k} \wedge \vec{i} = \vec{j}$. On the other hand $\vec{i} \wedge \vec{k} = -\vec{j}$

Notes: The properties of the vector product are:

- The vector product is not commutative (Anticommutative).
- Not associative : $\overrightarrow{V_1} \wedge (\overrightarrow{V_2} \wedge \overrightarrow{V_3}) \neq (\overrightarrow{V_1} \wedge \overrightarrow{V_2}) \wedge \overrightarrow{V_3}$.
- Distributive with respect to vector sum: $\vec{A}\Lambda \left(\vec{B_1} + \vec{B_2} \right) = \vec{A}\Lambda \vec{B_1} + \vec{A}\Lambda \vec{B_2}$

But:

$$\overrightarrow{V_1} \wedge \left(\overrightarrow{V_2} + \overrightarrow{V_3}\right) \neq \left(\overrightarrow{V_1} \wedge \overrightarrow{V_2}\right) + \left(\overrightarrow{V_1} \wedge \overrightarrow{V_3}\right)$$

• $\vec{A} \wedge \vec{B} = -\vec{B} \wedge \vec{A}$ car $sin(\vec{A}, \vec{B}) = -sin(\vec{B}, \vec{A})$

• $\vec{A} \wedge \vec{B} = \vec{0}$ when the two vectors are parallel $(\vec{A} \parallel \vec{B})$

8.3. Mixed product

The mixed product of three vectors is \vec{A} , \vec{B} and \vec{C} a scalar quantity m such that:

$$m = (\vec{A} \Lambda \vec{B}) \cdot \vec{C}$$

Where **m** represents the volume of the parallelepiped (حجم متوازي المستطيلات) constructed by the three vectors :

Note: The mixed product is commutative, $(\vec{A} \land \vec{B}) \cdot \vec{C} = \vec{A} \cdot (\vec{B} \land \vec{C}) = (\vec{C} \land \vec{A}) \cdot \vec{B}$

9. Derivative of a vector

Let the vector $\vec{A} = x\vec{i} + y\vec{j} + z\vec{k}$ which varies with time:

Its first derivative in relation to time is:

$$\overrightarrow{A'} = \frac{d\overrightarrow{A}}{dt} = \frac{dx}{dt}\overrightarrow{i} + \frac{dy}{dt}\overrightarrow{j} + \frac{dz}{dt}\overrightarrow{k}$$

The second derivative is:

$$\overrightarrow{A''} = \frac{d^2 \overrightarrow{A}}{dt^2} = \frac{d^2 x}{dt^2} \overrightarrow{i} + \frac{d^2 y}{dt^2} \overrightarrow{j} + \frac{d^2 z}{dt^2} \overrightarrow{k}$$

Note:

- Derivative of a scalar product $(\vec{A}.\vec{B})' = \vec{A'}.\vec{B} + \vec{A}.\vec{B}$
- If \vec{B} is constant $(\vec{A}.\vec{B})' = \vec{A'}.\vec{B}$
- $(\vec{A}^2)' = 0$ because $(\vec{A}^2)' = 2\vec{A'} \cdot \vec{A} = 0$
- The derivative vector is perpendicular to the vector.
- A vector is written as $\vec{A} = |\vec{A}|\vec{u} = A\vec{u}$, if \vec{u} is a variable vector, then $\vec{A}' = A'\vec{u} + A\vec{u}'$.

Example: The position vector on Cartesian Coordinate is written as:

$$\vec{A} = x\vec{\imath} + y\vec{\jmath} + z\vec{k}$$

The velocity vector in Cartesian Coordinates is written as:

$$\vec{V} = \frac{d\vec{OM'}}{dt} = \frac{dx}{dt}\vec{i} + \frac{dy}{dt}\vec{j} + \frac{dz}{dt}\vec{k}$$

The acceleration vector in Cartesian Coordinates is written as:

$$\vec{a} = \frac{d^2 \overrightarrow{OM}}{dt^2} = \frac{d^2 x}{dt^2} \vec{i} + \frac{d^2 y}{dt^2} \vec{j} + \frac{d^2 z}{dt^2} \vec{k}$$

Exercise

We give the three vectors $\overrightarrow{V_1}(1, 1, 0)$, $\overrightarrow{V_2}(0, 1, 0)$ and $\overrightarrow{V_3}(0, 0, 2)$.

- 1. Calculate norms $\|\overrightarrow{V_1}\|$, $\|\overrightarrow{V_2}\|$ and $\|\overrightarrow{V_3}\|$, deduce the unit vectors $\overrightarrow{v_1}$, $\overrightarrow{v_2}$ and $\overrightarrow{v_3}$ respectively from $\overrightarrow{V_1}$, $\overrightarrow{V_2}$ and de $\overrightarrow{V_3}$.
- 2. Calculate $\cos{(\overrightarrow{v_1}, \overrightarrow{v_2})}$, knowing that the corresponding angle is between 0 and π .
- 3. Calculate the mixed product $\overrightarrow{v_1}$. $(\overrightarrow{v_2} \wedge \overrightarrow{v_3})$. What does this product represent?

References

- 1. C. J. Papachristou, Hellenic Naval Academy, Introduction to Mechanics of Particles and Systems. (ResearchGat, 2020).
- 2. A.I. Borisenko, I.E. Tarapov, *Vector and Tensor Analysis with Applications* (Dover, 1979).
- 3. M.D. Greenberg, *Advanced Engineering Mathematics*, 2nd Edition (Prentice-Hall, 1998).