Chapitre 1

Suites numériques

1.1 Modes de définition d'une suite

1.1.1 Définition formelle

Définition 1.1 Une suite est une **fonction** de \mathbb{N} vers \mathbb{R} , $n \longmapsto u_n$.

Exemple 1.1
$$u_n = \frac{1}{n^2+1}, \ u_n = \sin n, \ u_{n+1} = 3u_n - 1, \ u_0 = 2$$

1.1.2 Définition explicite

Le terme u_n est donnée directement par une formule de type $u_n = f(n)$.

1.1.3 Définition par récurrence

C'est une suite qui est définie par une relation entre ces termes d'ordre $n, n-1, n+1, \cdots$ de la forme $\{u_0 = \alpha \text{ et } u_{n+1} = f(u_n)\}$, où f est est une fonction de la variable réelle.

Exemple 1.2 Soit
$$u_n$$
 la suite définie par $u_0 = 0$ et $u_{n+1} = \frac{u_n + 1}{u_n + 2}$.

1.2 Monotonie d'une suite

Pour étudier la monotonie d'une suite on calcul la valeur suivante: $u_{n+1} - u_n$ ou bien $\frac{u_{n+1}}{u_n}$ pour tout $n \in \mathbb{N}$, selon la suite.

Donc, on a les cas suivants:

- 1) si $u_{n+1} \geq u_n$, $\forall n \in \mathbb{N}$ alors la suite est dite **croissante**.
- 2) si $u_{n+1} > u_n$, $\forall n \in \mathbb{N}$ alors la suite est dite **strictement croissante**.
- 3) si $u_{n+1} \le u_n$, $\forall n \in \mathbb{N}$ alors la suite est dite **décroissante**.
- 4) si $u_{n+1} < u_n$, $\forall n \in \mathbb{N}$ alors la suite est dite **strictement décroissante**.
- 5) si $u_{n+1} = u_n$, $\forall n \in \mathbb{N}$ alors la suite est dite **constante**.

Exemple 1.3 Etudier la monotonie des suites suivantes

$$u_n = n^2$$
, $v_n = -3\sqrt{n} + 1$, $w_n = \left[\frac{n}{2}\right]$

Que peut on dire de la suite w_n .

1.3 Suites bornées

- Une suite (u_n) est **majorée** s'il existe $M \in \mathbb{R}$ tel que $\forall n \in \mathbb{N}, u_n \leq M$.
 - Une suite (u_n) est **minorée** s'il existe $m \in \mathbb{R}$ tel que $\forall n \in \mathbb{N}, m \leq u_n$.
- Une suite (u_n) est **bornée** si elle est à la fois majorée et minorée, c-à-d s'il existe $M, m \in \mathbb{R}$ tel que $\forall n \in \mathbb{N}, m \leq u_n \leq M$.

Exemple 1.4

$$\begin{cases} u_0 = 2 \\ u_{n+1} = 2 - \frac{1}{u_n}. \end{cases}$$

Montrons par récurrence que: $\forall n \in \mathbb{N} \ u_n > 1$,

En effet: pour n = 0, on a: $u_0 = 2 > 1$.

Supposons que: $u_n > 1$ pour un n fixé et montrons que: $u_{n+1} > 1$.

on a:
$$u_{n+1} = 2 - \frac{1}{u_n} > 2 - 1 = 1$$
.

Ainsi $\forall n \in \mathbb{N}, u_n > 1$ c'est à dire (u_n) est minorée par 1.

1.4 Suites particulières

1.4.1 Suites arithmétique

Définition 1.2 On dit qu'une suite $(u_n)_{n\in\mathbb{N}}$ est arithmétique si on passe d'un terme au suivant en ajoutant toujours le meme nombre réel r, on a donc $u_{n+1} = u_n + r$, le réel r est appelé raison de la suite $(u_n)_{n\in\mathbb{N}}$.

Exemple 1.5

- 1) La suite 1, 6, 11, 16, 21, est une suite arithmètique de raison 5.
- 2) La suite $u_n = 3n 2$ est arithmétique de raison 3 et de terme intiale $u_0 = -2$.

Théorème 1.1 Soit $(u_n)_{n\in\mathbb{N}}$ une suite arithmètique de raison r,

-Si r > 0, alors la suite est croissante.

-Si r < 0, alors la suite est décroissante.

Exprèssion du terme général u_n en fonction de n

Soit $(u_n)_{n\in\mathbb{N}}$ une suite arithmètique de raison r, alors on a

Remarque 1.1 $Si(u_n)_{n\in\mathbb{N}}$ est une suite arithmètique de raison r, et sin et p sont deux entiers naturels, alors on a: $u_n = u_p + (n-p) \times r$

Somme de trois termes consécutifs

Soit a, b, c trois terme succésif d'une suite arithmètique alors $a + c = 2 \times b$.

L'exprèssion de la somme des (n+1) termes consécutifs

Soit $(u_n)_{n\in\mathbb{N}}$ est une suite arithmètique de raison r, on note S_n la somme des (n+1) termes de la suite u_n

$$S_n = u_0 + u_1 + u_2 + \dots + u_n = \frac{(n+1)}{2}(u_0 + u_n)$$

Remarque 1.2 Somme de (n-p+1) termes consécutifs d'une suite arithmètique.

Soit $S_n = u_p + u_{p+1} + u_{p+2} + ... + u_n$. alors

$$S_n = \frac{(n-p+1)}{2}(u_p + u_n)$$

1.4.2 Suites géomètrique

Définition 1.3 On dit qu'une suite $(v_n)_{n\in\mathbb{N}}$ est géométrique, si on passe d'un terme au suivant en multiplions toujours par le meme nombre réel q, on a donc $v_{n+1} = v_n \times q$, le réel q est appelé raison de la suite $(v_n)_{n\in\mathbb{N}}$.

Exemple 1.6

- 1) La suite 1, 2, 4, 8, 16, est une suite gèomètrique de raison 2.
- 2) La suite $v_n = 3^n$ est géométrique de raison 3 et de terme intiale $v_0 = 3^0 = 1$.

Théorème 1.2 Soit $(v_n)_{n\in\mathbb{N}}$ une suite arithmètique de raison q

- -Si q > 0, alors la suite est croissante.
- -Si 0 < q < 1, alors la suite est décroissante.

Exprèssion du terme général v_n en fonction de n

Soit $(v_n)_{n\in\mathbb{N}}$ une suite géomètrique de raison q, alors on a

$$v_1 = v_0 \times q$$

$$v_2 = v_1 \times q = v_0 \times q_2$$

$$v_3 = v_2 \times q = v_0 \times q3.$$

•

.

$$v_n = v_0 \times q^n$$
.

Remarque 1.3 $Si(v_n)_{n\in\mathbb{N}}$ est une suite gèomètique de raison q, et si n et p sont deux entiers naturels, alors on a $v_n = v_p \times q^{(n-p)}$

Somme de trois termes consécutifs

Soit a, b, c trois terme succésif d'une suite arithmètique alors $a \times c = b^2$.

L'exprèssion de la somme des (n+1) termes consécutifs

Soit $(v_n)_{n\in\mathbb{N}}$ est une suite gèomètique de raison q, on note S_n la somme des (n+1) termes de la suite v_n

$$S_n = v_0 + v_1 + v_2 + \dots + v_n = v_0 \times (\frac{1 - q^{n+1}}{1 - q}), q \neq 1$$

Remarque 1.4 Somme de (n-p+1) termes consécutifs d'une suite géométrique.

Soit $S_n = u_p + u_{p+1} + u_{p+2} + ... + u_n$. alors

$$S_n = v_p \times (\frac{1 - q^{n-p+1}}{1 - q}), q \neq 1$$

1.5 Lemmes fondamentales de convergence des suites

1.5.1 Lemme de la limite d'une suite

Définition 1.4

Une suite (u_n) est dite **convergente** si sa limite l'existe et elle est égale à une constante unique.

Exemple 1.7 Dans chaque cas, trouver $\lim_{n\to +\infty} u_n$, où

$$u_n = q^n, \ q \in \mathbb{R}, \ u_n = 1 + \frac{1}{2^1} + \frac{1}{2^2} + \dots + \frac{1}{2^n}$$

- I) On discute suivant les valeurs de q, on a
- 1) Si q = 0 alors $q^n = 0$, d'ou $\lim_{n \to +\infty} q^n = 0$.
- 2) Si 0 < |q| < 1, on ecrit $|q|^n = e^{n \ln |q|}$, puisque 0 < |q| < 1, alors $\ln |q| < 0$ et donc $\lim_{n \to +\infty} n \ln |q| = -\infty$, donnant $e^{n \ln |q|} \to 0$.

Ainsi $|q|^n \to 0$, et donc $q^n \to 0$.

- 3) Si |q| > 1.
- a) Si q > 1 alors $\ln q > 0$ d'où $q^n = e^{n \ln q} \to +\infty$
- b) Si q < -1 alors la limite n'existe pas.
- 4) Si q = 1 alors $q^n = 1$, ainsi $q^n \to 1$
- 5) Si q = -1 alors $q^n = (-1)^n$, ainsi q^n n'as pas de limite.

II)

$$1+\frac{1}{2^1}+\frac{1}{2^2}+\ldots+\frac{1}{2^n}=(\frac{1-(\frac{1}{2})^{n+1}}{1-\frac{1}{2}})\to 2,\ car\ |q|=\left|\frac{1}{2}\right|=\frac{1}{2}<1.$$

Définition 1 (Convergence) La suite (u_n) converge vers $\ell \in \mathbb{R}$ si :

$$\forall \varepsilon > 0, \exists n_0 \in \mathbb{N} \text{ tel que } \forall n > n_0, |u_n - \ell| < \varepsilon.$$

On écrit alors $u_n \to \ell$ ou $\lim_{n \to \infty} u_n = \ell$.

Autrement dit:

$$\forall \varepsilon > 0, \exists n_0 \in \mathbb{N} \ tel \ que \ \forall n \ge n_0, \ l - \varepsilon < u_n < l + \varepsilon.$$

Exemple 1.8 Suite harmonique inverse : $u_n = \frac{1}{n} \Rightarrow \lim_{n \to +\infty} u_n = 0$.

Soit en effet $\varepsilon > 0$, on cherche un entier n_0 tel que $n \geq n_0$ et $|\frac{1}{n} - 0| < \varepsilon$

$$|\frac{1}{n} - 0| < \varepsilon \Leftrightarrow 0 - \varepsilon < \frac{1}{n} < 0 + \varepsilon \Leftrightarrow 0 < \frac{1}{n} < \varepsilon \Leftrightarrow n > \frac{1}{\varepsilon}$$

On peut poser $n_0 = \left[\frac{1}{\epsilon}\right] + 1$ pour que $n \ge n_0$ et $\left|\frac{1}{n} - 0\right| < \varepsilon$.

Remarque 1.5

- 1) L'entier n_0 dépend de ε et n'est pas unique.
- 2) Si (u_n) converge, toute suite $(u_{n+k})_{n\geq n_1}$ avec $n_1\geq n_0$ converge vers la meme limite.

Théorème 1.3 (Unicité de la limite) Si une suite converge, alors sa limite est unique.

Preuve: Supposons que (u_n) converge à la fois vers l et l', avec $l \neq l'$. Sans perte de généralité, supposons l > l' et posons $\varepsilon = \frac{l-l'}{2} > 0$.

D'aprés la définition de la limite, il existe n_0 et n_1 tels que :

$$\forall n \ge n_0, |u_n - l| < \varepsilon, \quad \forall n \ge n_1, |u_n - l'| < \varepsilon.$$

Pour $n \ge \max(n_0, n_1)$, on a alors :

$$u_n > l - \varepsilon = \frac{l + l'}{2}$$
 et $u_n < l' + \varepsilon = \frac{l + l'}{2}$,

ce qui est impossible. D'où l = l'.

1.3.1.1 Propriétés fondamentales

Théorème 1.4 Toute suite convergente est bornée.

Preuve: Soit (u_n) une suite convergente de limite l.

Prenons $\varepsilon = 1$. Il existe n_0 tel que pour tout $n \ge n_0, \, |u_n - l| < 1$, donc :

$$l - 1 < u_n < l + 1$$
.

Pour les termes u_0, \ldots, u_{n_0-1} , on a

$$u_k \le u_k \le u_k, \ k \in [0, n_0 - 1]$$

Notons:

$$\alpha = \min(l-1, u_0, \dots, u_{n_0-1}), \quad \beta = \max(l+1, u_0, \dots, u_{n_0-1}).$$

Alors pour tout $n, \alpha \leq u_n \leq \beta$, donc (u_n) est bornée.

Remarque 1.6

- 1) L'inverse est faux : une suite bornée n'est pas nécessairement convergente $(exemple: u_n = (-1)^n).$
- 2) Si une suite n'est pas bornée, elle diverge.

Théorème 1.5 Soient (u_n) et (v_n) deux suites, on a:

- 1. Si (u_n) converge vers l alors $|(u_n)|$ convergevers |l|.
- 2. $Si |(u_n)|$ converge vers 0 alors (u_n) converge vers 0.
- 3. $Si(u_n)$ converge vers 0 et (v_n) est bornée alors $(u_n \times v_n)$ converge vers 0.

Preuve:

1) On suppose (u_n) converge vers l et montrons que $|(u_n)|$ convergevers |l|

$$\forall \varepsilon > 0, \ \exists n_0 \in \mathbb{N} \ \text{tel que} \ \forall n \geq n_0, \ |u_n - \ell| < \varepsilon.$$

Comme $||u_n| - |\ell|| \le |u_n - \ell|$.

On a

$$\forall \varepsilon > 0, \ \exists n_0 \in \mathbb{N} \ \text{tel que} \ \forall n \geq n_0, \ ||u_n| - |\ell|| < \varepsilon.$$

d'où le résultat.

2) On suppose que $|(u_n)|$ converge vers 0 et montrons que (u_n) converge vers 0.

$$|(u_n)|$$
 converge vers $0 \Leftrightarrow \forall \varepsilon > 0$, $\exists n_0 \in \mathbb{N}$ tel que $\forall n \geq n_0$, $||u_n| - 0| < \varepsilon$.

 $Comme ||u_n|| = |u_n|.$

On a

$$\forall \varepsilon > 0, \ \exists n_0 \in \mathbb{N} \ \text{tel que} \ \forall n \ge n_0, \ |u_n| < \varepsilon.$$

d'où (u_n) converge vers 0.

3) On suppose que (u_n) converge vers 0 et (v_n) est bornée et montrons que $(u_n \times v_n)$ converge vers 0.

$$(u_n)$$
 converge vers $0 \Leftrightarrow \forall \varepsilon > 0, \ \exists n_0 \in \mathbb{N} \text{ tel que } \forall n \geq n_0, \ |u_n| < \varepsilon.$

$$(v_n)$$
 est bornée $\Leftrightarrow \exists M > 0; |v_n| \leq M.$

$$(u_n \times v_n)$$
 converge vers $0 \Leftrightarrow \forall \varepsilon > 0$, $\exists n_0 \in \mathbb{N}$ tel que $\forall n \ge n_0 \Rightarrow |u_n v_n| < \varepsilon$.

Soit $\varepsilon > 0$, on cherche un entier naturel n_0 qui vérifie

$$\forall n \ge n_0 \Rightarrow |u_n v_n| < \varepsilon.$$

$$(v_n)$$
 est bornée $\Leftrightarrow \exists M > 0; |v_n| \leq M.$

Pour $\varepsilon = \frac{\varepsilon'}{M} > 0$, on a

$$|u_n v_n| = |u_n| \times |v_n| \le \varepsilon \times M = \varepsilon' \Rightarrow |u_n v_n| < \varepsilon'$$

pour finir on posera alors $n_0 = n_1$.

Exemple 2 Déterminer la nature des suites de terme général (u_n)

$$u_n = \frac{(-1)^n}{n}, \quad u_n = \frac{\cos n}{n}.$$

Opérations sur les limites

Si $u_n \to \ell$ et $v_n \to m$ alors :

$$u_n \pm v_n \to \ell \pm m$$
, $u_n v_n \to \ell m$, si $v_n \not\to 0$ et $m \not= 0$, $\frac{u_n}{v_n} \to \frac{\ell}{m}$.

Exemple 1.9 déterminer la nature de la suite suivante $u_n = \left(\frac{3+(\pi\times7^n)}{5-(e\times7^n)}\right)$

$$u_n = \left(\frac{3 + (\pi \times 7^n)}{5 - (e \times 7^n)}\right) = \frac{7^n}{7^n} \left(\frac{\frac{3}{7^n} + \pi}{\frac{5}{7^n} - e}\right) = \left(\frac{\frac{3}{7^n} + \pi}{\frac{5}{7^n} - e}\right) \cdot car \ 7^n \neq 0$$

Or $\frac{3}{7^n} + \pi$ converge vers π , car $\frac{3}{7^n}$ converge vers θ et $\pi \to \pi$.

De meme $\frac{3}{7^n}$ – e converge vers –e, car $\frac{3}{7^n}$ converge vers θ et $e \to e$.

conclusions $\lim_{n \to +\infty} u_n = -\frac{\pi}{e}$.

Corollaire 1.1 Considerons deux suites (u_n) et (v_n) telle que $0 \le u_n \le v_n$, alors $Si \lim_{n \to \infty} v_n = 0$ alors $\lim_{n \to \infty} u_n = 0$.

Limite d'une suite récurrente

Proposition 3 Soit la suite (u_n) qui est définie par une relation réccurente de la forme $\{u_0 = \alpha \text{ et } u_{n+1} = f(u_n)\}$, où f est est une fonction continue sur un intervalle I de \mathbb{R} alors la limite l de la suite réccurente (u_n) verifie f(l) = l où $l \in I$.

Remarque 1.7

- 1. Les solutions de léquation f(x) = x sont appelés les points fixes de f.
- 2. Soit a un point fixe de f, si $u_0 \le a$ alors $u_n \le a$, $\forall n \in \mathbb{N}$.

Théorème 1.6 Soit (u_n) une suite récurrente et f est l'application qui lui est associée.

 $Si\ f\ est\ croissante\ alors\ (u_n)\ est\ monotone,\ de\ plus$

 $Si \ u_0 \le u_1 \ alors \ (u_n) \ est \ croissante.$

 $Si \ u_0 \ge u_1 \ alors \ (u_n) \ est \ décroissante.$

Théorème 1.7 Soit (u_n) une suite récurrente et f est l'application qui lui est associée.

Si f est décroissante alors (u_n) n'est pas monotone, de plus (u_{2n}) et (u_{2n+1}) sont monotones en variation contraire, en d'autres termes:

 $Si \ u_0 \le u_2 \ alors \ (u_{2n}) \ est \ croissante \ et \ (u_{2n+1}) \ est \ décroissante.$

 $Si \ u_0 \ge u_2 \ alors \ (u_{2n}) \ est \ d\'{e}croissante \ et \ (u_{2n+1}) \ est \ croissante.$

Exemple 1.10

1) Soit (u_n) la suite définie par $u_0 = 0$ et $u_{n+1} = \frac{u_n + 1}{u_n + 2}$.

Dans ce cas $f(x) = \frac{x+1}{x+2}$ et $I = [0, +\infty[$.

$$f'(x) = \frac{1}{(x+2)^2} > 0$$
 alors f est croissante

donc la suite (u_n) est monotone et puisque $u_1 = \frac{1}{2} > 0 = u_0$ alors (u_n) est croissante.

de plus $f(x) = \frac{x+1}{x+2} = 1 - \frac{1}{x+2}$ est majorée par 1, alors (u_n) converge vers 1

Ainsi la limite l vérifie

$$f(l) = l \Leftrightarrow \frac{l+1}{l+2} = l \Leftrightarrow l^2 + l - 1 = 0 \Leftrightarrow l = \frac{+1 + \sqrt{5}}{2}$$

2) Soit (u_n) la suite définie par $u_0 = 4$ et $u_{n+1} = \sqrt{2u_n + 3}$.

Dans ce cas $f(x) = \sqrt{2x+3}$ et $I = [0, +\infty[$.

$$f'(x) = \frac{1}{2\sqrt{2x+3}} > 0$$
 alors f est croissante

donc la suite (u_n) est monotone et puisque $4 = u_0 > u_1 = \sqrt{2}$ alors (u_n) est décroissante.

de plus $f(x) = \sqrt{2x+3}$ est minorée par $\sqrt{3}$, alors (u_n) converge vers 1

Ainsi la limite l vérifie

$$f(l) = l \Leftrightarrow \sqrt{2l+3} = l \Leftrightarrow l^2 - 2l - 3 = 0 \Leftrightarrow l = 3$$

Définition 1.5 Une suite (u_n) est dite **divergente** si sa limite est égale à l'infinie ou bien deux limites ou plus.

Exemple 1.11

- 1) $u_n = n \Rightarrow \lim_{n \to +\infty} u_n = +\infty$.
- 2) $v_n = (-1)^n$, si n = 2k alors $v_n = 1$, si n = 2k + 1 alors $v_n = -1$.

La limite n'existe pas car on a le cas d'indice pair et l'indice impair.

Définition 4 (Divergence)

1) On dit que (u_n) diverge vers $+\infty$ si: $\forall A > 0, \exists n_0 \in \mathbb{N} \text{ tel que } \forall n \geq n_0, |u_n| \geq A$.

On écrit alors $u_n \to +\infty$ ou $\lim_{n \to \infty} u_n = +\infty$.

2) On dit que la suite (u_n) tend vers $-\infty$ si: $\forall A > 0, \exists n_0 \in \mathbb{N} \text{ tel que } \forall n \geq n_0, |u_n| \leq -A.$

On écrit alors $u_n \to -\infty$ ou $\lim_{n \to \infty} u_n = -\infty$.

Exemple 1.12

$$\lim_{n\to\infty} \sqrt{n} = +\infty \Leftrightarrow \forall A>0, \ \exists n_0\in\mathbb{N} \ ; \forall n\geq n_0, \ |u_n|\geq A$$

Ainsi $\sqrt{n} \ge A \Leftrightarrow n \ge A^2$.

Il suffit de choisir $n_0 \ge A^2$ et $n \ge n_0$ pour que $\lim_{n \to \infty} \sqrt{n} = +\infty$.

Corollaire 1.2 Considerons deux suites (u_n) et (v_n) telle que $u_n \leq v_n$, alors

- 1) $Si \lim_{n \to \infty} u_n = +\infty \ alors \lim_{n \to \infty} v_n = +\infty.$
- 2) $Si \lim_{n \to \infty} v_n = -\infty \ alors \lim_{n \to \infty} u_n = -\infty.$

1.5.2 Lemme de la monotonie d'une suite

Théorème 1.8 (Convergence monotone)

- 1) Une suite croissante et majorée est convergente et sa limite est égale à sa borne supérieure.
- 2) Une suite décroissante et minorée est convergente et sa limite est égale à sa borne inferieure.

Preuve: Soit (u_n) une suite croissante et supposons qu'elle est majorée par M.

L'ensemble $A = \{u_n : n \in \mathbb{N}\}$ est non vide et majorée, donc $\ell = \sup A$ existe.

Montrons que $u_n \to \ell$.

Soit $\varepsilon > 0$. Par définition de la borne supèrieure, il existe n_0 tel que $u_{n_0} > \ell - \varepsilon$.

Pour tout $n \ge n_0$, comme la suite est croissante, $u_n \ge u_{n_0} > \ell - \varepsilon$ et toujours $u_n \le \ell$, donc $|u_n - \ell| \le \varepsilon$.

D'où la convergence. ■

Exemple 1.13 Soit $(U_n)_{n\in\mathbb{N}}$ la suite définie par $\forall n\in\mathbb{N},\ U_{n+1}=2-\frac{1}{U_n},\ U_0=2.$

- 1) Montrer que $\forall n \in \mathbb{N}, U_n > 1$.
- 2) La suite $(U_n)_{n\in\mathbb{N}}$ est-elle monotone?
- 3) La suite $(U_n)_{n\in\mathbb{N}}$ est-elle convergente? Quelle serait sa limite?

1.5.3 Lemme de convergence des suites Adjacentes

Définition 5 Deux suites (u_n) et (v_n) sont adjacentes si:

- a) u_n est croissante,
- b) v_n est décroissante,
- c) $\lim_{n\to\infty} (v_n u_n) = 0$ (elles sont "de plus en plus proches").

Théorème 1.9 Si (u_n) et (v_n) sont adjacentes alors elles convergent vers la meme limite ℓ et pour tout n, $u_n \le \ell \le v_n$.

Exemple 1.14 Soient $(u_n = \sum_{k=1}^n \frac{1}{k!})$ et $(v_n = u_n + \frac{1}{n!})$ sont adjacentes car a) (u_n) est croissante, car

$$u_{n+1} - u_n = \sum_{k=1}^{n+1} \frac{1}{k!} - \sum_{k=1}^{n} \frac{1}{k!} = \frac{1}{(n+1)!} > 0$$

b) (v_n) est décroissante, car

$$v_{n+1} - v_n = u_{n+1} + \frac{1}{(n+1)!} - u_n - \frac{1}{n!} = \frac{2}{(n+1)!} - \frac{1}{n!} = \frac{1-n}{(n+1)!} < 0$$

 $c \lim_{n \to \infty} (v_n - u_n) = \lim_{n \to \infty} \frac{1}{n!} = 0$.

Alors elles convergent vers la meme limite.

1.5.4 Théorème d'encadrement (Règle de Gendarmes)

Théorème 1.10 Soient $(a_n), (b_n), (c_n)$ sont trois suites réelles telles que, pour n assez grand, $a_n \leq b_n \leq c_n$ et si $a_n \to \ell$ et $c_n \to \ell$, alors $b_n \to \ell$.

Preuve: Soit $\varepsilon > 0$. Comme $a_n \to \ell$ il existe n_1 tel que $|a_n - \ell| < \varepsilon$ pour $n \ge n_1$. De meme $c_n \to \ell$ donne n_2 tel que $|c_n - \ell| < \varepsilon$ pour $n \ge n_2$. Pour $n \ge N = \max(n_1, n_2)$ on a $\ell - \varepsilon < a_n \le b_n \le c_n < \ell + \varepsilon$, donc $|b_n - \ell| < \varepsilon$.

Exemple 1.15 Montrer que $\lim_{n\to\infty} \frac{\sin n}{n} = 0$.

On utilise $-1 \le \sin n \le 1$ et on encadre: $-\frac{1}{n} \le \frac{\sin n}{n} \le \frac{1}{n}$ et $\frac{1}{n} \to 0$, d'où le résultat par gendarme.

1.5.5 Les sous suite

Définition 1.6

Soient (u_n) une suite numérique réelle et $\varphi : \mathbb{N} \to \mathbb{N}$ une application strictement croissante. La suite (v_n) définie par $v_n = u_{\varphi(n)}$ est dite suite extraite ou bien sous suite de la suite (u_n) .

Exemple 1.16 Soit $u_n = (-1)^n$, $u_{2n} = (-1)^{2n} = 1$ et $u_{2n+1} = (-1)^{2n+1} = -1$ sont deux sous suite de la suite (u_n) .

Théorème 1.11

Si la suite (u_n) converge vers l alors toute sous suite de (u_n) converge et elle converge vers l.

La contraposée de ce théorème est:

Remarque 1.8 Si une suite (u_n) admet une sous suite divergente alors la suite (u_n) diverge. Par conséquent pour montrer qu'une suite diverge il suffit de

- 1) montrer qu'elle admet une sous suite qui diverge.
- 2) ou bien de montrer qu'elle admet deux sous suites qui converge vers deux limites distinctes.

Exemple 1.17 Montrer que la suite de terme général $u_n = (-1)^n$ diverge.

En effet, soient les deux sous suites de (u_n) ; $w_1 = u_{2n} = (-1)^{2n}$ et $w_2 = v_{2n+1} = (-1)^{2n+1}$. On a (w_1) converge vers 1 et (w_2) converge vers -1 et comme $1 \neq -1$ alors (u_n) diverge.

Exemple 1.18 Montrer que les suites suivantes sont divergentes $u_n = \sin\left(\frac{n\pi}{2}\right)$ et $v_n = \cos\left(\frac{n\pi}{4}\right)$.

Théorème 1.12 Si (u_{2n}) et (u_{2n+1}) convergent vers la même limite l alors la suite (u_n) converge et elle converge vers l.

Preuve:

Soit $\varepsilon > 0$, comme $\lim_{n \to \infty} u_{2n} = \ell$, il existe $N_1 \in \mathbb{N}$ tel que pour tout $n \ge N_1$ on a $|u_{2n} - l| < \epsilon$. De meme, comme $\lim_{n \to \infty} u_{2n+1} = \ell$, il existe $N_2 \in \mathbb{N}$ tel que pour tout $n \ge N_2$ on a $|u_{2n+1} - l| < \epsilon$. Posons $M = \max(2N_1, 2N_2 + 1)$. Montrons que pour tout $n \geq M$, on a $|u_n - l| < \epsilon$.

Si n est pair, n=2k et comme $n\geq M\geq 2N_1,$ on a $k\geq N_1$ et donc

$$|u_n - l| = |u_{2k} - l| < \epsilon$$

Si n est impair, n=2k+1 et comme $n\geq M\geq 2N_2+1$, on a $k\geq N_2$ et donc

$$|u_n - l| = |u_{2k+1} - l| < \epsilon$$

Ainsi pour tout $n \geq M$, on a $|u_n - l| < \epsilon$.

Par la définition de la convergence, $\lim_{n\to\infty} u_n = \ell$.

Théorème 1.13 (de Bolzano-Weirstrass)

Pour toute suite bornée, on peut extraire une sous suite convergente.

1.5.6 Les suites de Cauchy

Définition 1.7 Une suite récelle $(u_n)_{n\geq 1}$ est dite **de Cauchy** si pour tout $\varepsilon > 0$, il existe un entier $N \in \mathbb{N}$ tel que pour tous $q > p \geq N$, on ait $|u_p - u_q| < \varepsilon$.

Autrement dit

Cette définition exprime l'dée que les termes de la suite deviennent arbitrairement proches les uns des autres lorsque n devient grand.

Exemple 1.19 La suite définie par $u_n = \frac{1}{n}$ est une suite de Cauchy.

Démonstration : Soit $\varepsilon > 0$. Supposons que q > p alors $|q - p| = q - p \le q$, donc:

$$|u_p - u_q| = \left| \frac{1}{p} - \frac{1}{q} \right| = \frac{|q - p|}{pq} \le \frac{q}{pq} = \frac{1}{p}.$$

Pour que $\frac{1}{p} < \varepsilon$ il suffit de choisir $p > \frac{1}{\varepsilon}$ et puisque q > p, on aura aussi $q > \frac{1}{\varepsilon}$

 $Maintenant\ choisissons\ le\ bon\ N,$

en effet, prenons $N = [\frac{1}{\varepsilon}].$

alors pour tous $p, q \ge N$ on $a |u_p - u_q| \le \frac{1}{p} \le \frac{1}{N} < \varepsilon$.

Ainsi, (u_n) est une suite de Cauchy.

Théorème 1.14 Toute suite de Cauchy est bornée.

Théorème 1.15 La suite (u_n) converge dans \mathbb{R} si et seulement si (u_n) est une suite de Cauchy.

Preuve:

1) Soit (u_n) une suite convergente de limite $l \in \mathbb{R}$.

Soit $\varepsilon > 0$. Il existe N tel que pour tout $n \geq N$, $|u_n - l| < \frac{\varepsilon}{2}$.

Alors, pour tous $p, q \ge N$: $|u_p - u_q| \le |u_p - l| + |u_q - l| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$.

Ainsi (u_n) est une suite de Cauchy.

2) Pour la réciproque

Soit (u_n) une suite de Cauchy dans \mathbb{R} . La suite est bornée (on peut le montrer en prenant $\varepsilon = 1$).

Par le théorème de Bolzano-Weierstrass, elle admet une sous-suite convergente. On montre alors que la suite entière converge vers la meme limite. ■

Remarque 1.9

- 1) La suite (u_n) diverge si et seulement si (u_n) n'est pas de Cauchy.
- 2) La suite (u_n) n'est pas de Cauchy si et seulement si

$$\exists \varepsilon > 0, \ \forall n \in N; \ \exists p, q \in N : p \ge q \ge n_0 \ et \ |u_p - u_q| \ge \varepsilon$$

Exemple 1.20 *Soit* $u_n = \sum_{k=1}^{n} \frac{1}{k}$.

1) Caluler $u_{2n} - u_n$

$$u_{2n} - u_n = \sum_{k=1}^{2n} \frac{1}{k} - \sum_{k=1}^{n} \frac{1}{k} = \sum_{k=n+1}^{2n} \frac{1}{k} = \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n}$$

2) En déduire que (u_n) diverge

$$\frac{\frac{1}{n+1} \ge \frac{1}{2n}}{\frac{1}{n+2} \ge \frac{1}{2n}} \\
\vdots \\
\frac{1}{n+2} \ge \frac{1}{2n}$$

$$\Rightarrow u_{2n} - u_n \ge \frac{n}{2n} = \frac{1}{2}.$$

$$\frac{1}{n+n} \ge \frac{1}{2n}$$

Par conséquent

$$\exists \varepsilon = \frac{1}{2} > 0, \ \forall n \in N; \ \exists p = 2n, q = n \in N : p \geq q \geq n \ et \ |u_p - u_q| \geq \frac{1}{2}$$

Conclusion (u_n) n'est pas de Cauchy donc elle diverge.

1.6 Exercices

Exercice 1 Vrai ou faux?

- 1) Si une suite n'est pas majorée, elle est minorée.
- 2) Si une suite n'est pas croissante, elle est décroissante.
- 3) Si une suite est négative, elle est majorée.
- 4) Si une suite est décroissante et minorée par 0, converge vers 0.

Exercice 2

- 1) oit $(U_n)_{n\in\mathbb{N}^*}$ la suite de terme général $U_n=\frac{(-1)^n}{n}$
- a) Cette suite est-elle positive? négative?
- b) Est-elle majorée? minorée?
- c) Est-elle croissante? décroissante?
- d) pourquoi elle converge?
- e) Pouvez-vous trouver toutes les valeurs de $n \in \mathbb{N}$ telles que $|U_n| \le 10^3$.
- 2) Soit $(U_n)_{n\in\mathbb{N}^*}$ la suite de terme général $U_n=\frac{n-2}{2n}$.

Par deux méthodes différentes, montrer que $(U_n)_{n\in\mathbb{N}^*}$ est bornée.

Exercice 3

1) En utilisant la définition de la limite, montrer que

$$\lim_{n\to +\infty}\frac{(-1)^n}{n}=0, \qquad \lim_{n\to +\infty}\frac{5n-1}{2n+1}=\frac{5}{2}, \qquad \lim_{n\to +\infty}\sqrt[n]{5}=1, \qquad \lim_{n\to +\infty}\left(\frac{3}{2}\right)^n=+\infty.$$

2) Déterminer les limites des suites numériques suivantes

$$\lim_{n \to +\infty} \left(\frac{n^5 5^n + n^7 7^n}{3^n + 8^n} \right), \quad \lim_{n \to +\infty} (\sqrt[3]{n+1} - \sqrt[3]{n}), \quad \lim_{n \to +\infty} \left(\sum_{k=1}^n \frac{1}{k^2 + k} \right)$$

Exercice 4

1) A l'aide de la règle d'encadrement de gendarmes, montrer que les suites de termes généraux suivants sont convergentes et calculer leurs limites:

$$u_n = \frac{n^2 \sin(n^3 + 1)}{n^3 + 1}, \quad u_n = \left(\sum_{k=1}^n \frac{n}{n^2 + k}\right), \quad u_n = \left(\sum_{k=1}^n \frac{2n + 1}{3n^2 + k}\right).$$

$$u_n = \frac{\sin(n)}{n + (-1)^{n+1}}, \quad u_n = \frac{n - (-1)^n}{n + (-1)^n}$$

2) A l'aide des sous-suites, montrer que les limites suivantes n'existent pas

$$\lim_{n\to +\infty} \sin(\frac{n\pi}{2}), \ \lim_{n\to +\infty} \cos\left(\frac{n\pi}{4}\right),$$

Exercice 5

- 1) Par récurrence, montrer que, $\forall n \in \mathbb{N}^*$, on a $1+2+3+...+n=\frac{n(n+1)}{2}$.
- 2) On rappelle que la partie entière d'un nombre réel x est l'unique entier, noté E(x), vérifiant $E(x) \le x < E(x) + 1$.
- a) Etablir que $x-1 < E(x) \le x$.
- b) Pour tout $n \in \mathbb{N}^*$, on pose

$$U_n = \frac{E(\pi) + E(2\pi) + \dots + E(n\pi)}{n^2}$$

Montrer que l'on a l'encadrement

$$\frac{\pi(n+1)-2}{2n} < U_n \le \frac{\pi(n+1)}{2n}$$

c) Déduire que la suite (U_n) est convergente puis déterminer sa limite.

Exercice 6 Soit la suite $(U_n)_{n\in\mathbb{N}}$ de terme général U_n définie par

$$U_n = \frac{1 \times 3 \times ... \times (2n+1)}{3 \times 6 \times ... \times (3n+3)}.$$

est convergente et déterminer sa limite.

Exercice 7 On considère la suite (U_n) définie par $\forall n \in \mathbb{N}, U_{n+1} = \frac{U_n}{2} + \frac{3}{2U_n}$ et $U_0 = 10$.

- a) Montrer que $\forall n \in \mathbb{N}, U_n \geq 0$.
- b) si la suite (U_n) converge, déterminer sa limite?
- c) Notons $l = \lim_{n \to +\infty} U_n$, Montrer que $\forall n \in \mathbb{N}, U_n l > 0$.
- d) En déduire que (U_n) est décroissante, que peut-on conclure?

Exercice 8 On considère la suite (U_n) définie par $\forall n \in \mathbb{N}, U_{n+1} = U_n^2 + \frac{2}{9}$ et $U_0 = \frac{1}{2}$.

- 1) Montrer que pour tout $n \in \mathbb{N}, \frac{1}{3} < U_n < \frac{2}{3}$.
- 2) Vérifier que U_n est monotone.
- 3) En déduire que U_n est convergente et donner sa limite.

Exercice 9 On considère la suite (u_n) définie par $u_0 = 2$ et $u_{n+1} = \frac{8+5u_n}{3+u_n}$.

- 1. Montrer que $\forall n \in \mathbb{N}, u_n > 0$.
- 2. Soit (v_n) la suite définie par $v_n = \frac{u_n 4}{u_n + 2}$, calculer v_{n+1} en fonction de v_n .
- 3. Montrer que la suite (u_n) est convergente et donner sa limite.

Exercice 10 Soit (U_n) la suite définie par: $U_0 = 1$ et $U_{n+1} = U_n + \frac{1}{U_n}$

- 1) Montrer par récurrence que pour tout $n \in \mathbb{N}, U_n > 0$.
- 2) Etudier les variations de (U_n) .
- 3) La suite (U_n) peut elle converger vers une limite finie ?

Exercice 11 Soit (U_n) la suite définie par: $U_0 = 1$ et $U_{n+1} = U_n^2 + 1$.

- 1) Montrer par récurrence que pour tout $n \in N$, $U_n > 1$.
- 2) Etudier la monotonie
- 3) Calculer les points fixe de $f(x) = x^2 + 1$ sur $[1, +\infty[$ puis en déduire la nature de (U_n) .

Exercice 12 Soit (U_n) la suite définie par: $U_{n+1} = \frac{1}{2}\sqrt{2U_n + 3}$ et $U_0 \in \mathbb{R}^+$.

- 1) Etudier la monotonie de (U_n) sur $[0, +\infty[$.
- 2) Etudier le signe de $u_1 u_0$.

Exercice 13 Soit $(u_n)_{n\geq 0}$ la suite définie par $u_0 \in]0,1]$ et $u_{n+1} = \frac{u_n}{2} + \frac{(u_n)^2}{4}$.

- 1. Montrer que : $\forall n \in \mathbb{N}, u_n > 0$.
- 2. Montrer que : $\forall n \in \mathbb{N}, u_n \leq 1$.
- 3. Montrer que la suite est monotone. En déduire qu'elle est convergente.
- 4. Déterminer la limite de la suite $(u_n)_{n\geq 0}$.

Exercice 14 Etudier si les suites suivantes sont adjacentes

1.
$$u_n = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2} \dots et \quad v_n = u_n + \frac{1}{n}$$
.

2.
$$u_n = 1 + \frac{1}{2^3} + \frac{1}{3^3} + \dots + \frac{1}{n^3}$$
 et $v_n = U_n + \frac{1}{n^2}$.

Exercice 15 On considère les suites (u_n) et (v_n) définie par

$$\begin{cases} u_0 = 0, & v_0 = 2. \\ u_{n+1} = \sqrt{u_n v_n}, & v_{n+1} = \frac{u_n + v_n}{2} \end{cases}$$

- 1) Montrer que $\forall n \in \mathbb{N}, \ 0 \le u_n \le v_n$.
- 2) Etudier le sense de variation de chacune des deux suites.
- 3) Montrer que la difference $(u_n v_n)$ tend vers θ
- 4) En déduire que les suites (u_n) et (v_n) sont **adjacentes** puis déterminer leur limite commune.

Exercice 16 On considère les deux suites $(x_n)_{n\geq 0}$ et $(y_n)_{n\geq 0}$ tel que $x_0 < y_0$ définies par:

$$\begin{cases} x_0 = 0 \\ x_{n+1} = \frac{2x_n + y_n}{3} \end{cases} et \begin{cases} y_0 = 2 \\ y_{n+1} = \frac{x_n + 2y_n}{3} \end{cases}$$

On considère la suite $(w_n)_{n\geq 0}$ définie par $w_n=x_n-y_n$.

- 1. Démontrer que $(w_n)_{n\geq 0}$ est géométrique, convergente et déterminer sa limite.
- 2. Etudier le sens de variations des suites $(x_n)_{n\geq 0}$ et $(y_n)_{n\geq 0}$.
- 3. Montrer que les suites $(x_n)_{n\geq 0}$ et $(y_n)_{n\geq 0}$ sont adjacentes et qui convergent vers la même limite que nous noterons L.
- 4. Calculer $x_n + y_n$ pour tout $n \in \mathbb{N}$. En déduire la valeur de L.

Exercice 17

- 1) On considère la suite (U_n) définie par $\forall n \in \mathbb{N}, \ U_{n+1} = \frac{4}{5}U_n + \frac{1}{5}$ et $U_0 = 0$.
- a) Montrer que $\forall n \in \mathbb{N}^*, |U_{n+1} U_n| = (\frac{4}{5})^n |U_1 U_0|.$
- b) Déduire que (U_n) est de Cauchy, calculer alors la limite.
- 2) Montrer que la suite $U_n = \sum_{k=2}^n \frac{1}{k^2}$, $n \in \mathbb{N} \setminus \{0,1\}$ est de Cauchy, que déduiser vous.
- 3) Montrer que la suite $U_n = \sum_{k=1}^n \frac{\cos k}{k!}$ est de Cauchy, que déduiser vous.

Les suites suivantes sont-ellres de cauchy

- 4) $U_n = 1 + \frac{1}{4} + \frac{2^2}{4^2} + ... + \frac{n^2}{4^n}$ (montrer d'abord que $4^n > n^4$, $n \ge 5$).
- 5) $U_n = 1 + \frac{1}{2} + \dots + \frac{1}{n}$.

(Indication, montrer que la suite U_n est croissante puis calculer $|U_{2n} - U_n|$), que déduiser vous).