Université Abou BakrBelkaïd-Tlemcen Faculté des Sciences. Département de Mathématiques Licence 1 Mathématiques

Fiche 3: Suites numériques.

Exercice 1

- 1. Soit $(U_n)_{n\in\mathbb{N}^*}$ la suite de terme général $U_n=\frac{(-1)^n}{n}$
 - (a) Cette suite est-elle positive? négative?
 - (b) Est-elle majorée? minorée?
 - (c) Est-elle croissante? décroissante?
 - (d) Que peut on dire pour les sous suites U_{2n} et U_{2n+1}
 - (e) Pourquoi elle converge?
 - (f) Pouvez-vous trouver toutes les valeurs de $n \in \mathbb{N}$ telles que $|U_n| \le 10^3$.
- 2. Soit $(U_n)_{n\in\mathbb{N}^*}$ la suite de terme général $U_n = \frac{n-2}{2n}$. Par deux méthodes différentes, montrer que $(U_n)_{n\in\mathbb{N}^*}$ est bornée.

Exercice 2

1. Déterminer les limites des suites numériques suivantes

$$\lim_{n \to +\infty} \left(\frac{n^5 5^n + n^7 7^n}{3^n + 8^n} \right), \quad \lim_{n \to +\infty} (\sqrt[3]{n+1} - \sqrt[3]{n}), \quad \lim_{n \to +\infty} \left(\sum_{k=1}^n \frac{1}{k^2 + k} \right)$$

2. En utilisant la définition de la limite, montrer que

$$\lim_{n \to +\infty} \frac{(-1)^n}{2n} = 0, \quad \lim_{n \to +\infty} \frac{5n-1}{2n+1} = \frac{5}{2}, \quad \lim_{n \to +\infty} \sqrt[n]{5} = 1, \quad \lim_{n \to +\infty} \left(\frac{3}{2}\right)^n = +\infty.$$

Exercice 3

Soit la suite $(u_n)_{n\in\mathbb{N}}$ de terme général u_n définie par

$$u_n = \frac{1 \times 3 \times \dots \times (2n+1)}{3 \times 6 \times \dots \times (3n+3)}.$$

- 1. Montrer que $\forall n \in \mathbb{N}, u_n > 0$.
- 2. Montrer que la suite (u_n) est convergente et déterminer sa limite.

Exercice 4

1. A l'aide de la règle d'encadrement des gendarmes, montrer que les suites suiantes sont convergentes

$$u_n = \frac{n^2 \sin(n^3 + 1)}{n^3 + 1}, \quad u_n = \frac{\cos(n)}{n + (-1)^n}, \quad u_n = \sum_{k=1}^n \left(\frac{n}{n^2 + k}\right).$$

2. A l'aide des sous-suites, montrer que les limites suivantes n'existent pas

$$\lim_{n\to+\infty}\sin(\frac{n\pi}{2}),\ \lim_{n\to+\infty}\cos\left(\frac{n\pi}{4}\right),$$

Exercice 5

On considère la **suite récurente** (U_n) définie par

$$\forall n \in \mathbb{N}, \ U_{n+1} = U_n^2 + \frac{2}{9} \text{ et } U_0 = \frac{1}{2}.$$

- 1. Montrer que pour tout $n \in \mathbb{N}$, $\frac{1}{3} < U_n < \frac{2}{3}$.
- 2. Vérifier que U_n est monotone.
- 3. En déduire que U_n est convergente et donner sa limite.

Exercice 6

Dans chaque cas suivant étudier si les suites sont adjacentes.

1.
$$U_n = \sum_{k=1}^n \frac{1}{1+k^2}$$
 et $V_n = U_n + \frac{1}{n} - \frac{1}{2n^2}, \forall n \in \mathbb{N}^*.$

2.
$$U_n = 1 - \frac{1}{n}$$
 et $V_n = 1 + \sin(\frac{1}{n}), \forall n \in \mathbb{N}^*.$

Exercice 7

- 1. On considère la suite (U_n) définie par $\forall n \in \mathbb{N}, U_{n+1} = \frac{4}{5}U_n + \frac{1}{5}$ et $U_0 = 0$. a) Montrer que $\forall n \in \mathbb{N}^*, |U_{n+1} U_n| = (\frac{4}{5})^n |U_1 U_0|$.

 - b) Déduire que (U_n) est de **Cauchy**, calculer alors la limite.
- 2. Montrer que la suite $U_n = \sum_{k=2}^n \frac{1}{k^2}$, est de **Cauchy**, que déduiser vous.
- 3. (Supp) Les suites suivantes sont-ellres de Cauchy

(a)
$$U_n = 1 + \frac{1}{4} + \frac{2^2}{4^2} + \dots + \frac{n^2}{4^n}$$
 (montrer d'abord que $4^n > n^4, n \ge 5$)

2

(b)
$$U_n = \sum_{k=1}^n \frac{\cos k}{k!}$$
.

(c)
$$U_n = \frac{1}{2^2} + \frac{2}{3^2} + \dots + \frac{n}{(n+1)^2}$$
.

Exercice 8 (Supp)

On considère la suite (V_n) définie par $\forall n \in \mathbb{N}, V_{n+1} = \frac{V_n}{2} + \frac{3}{2V_n}$ et $V_0 = 1$.

- 1. Montrer que (V_n) est positive. Si elle devait converger, qu'elle serait sa limite?
- 2. Notons l la limite éventuelle selon la question précédente. Montrer que pour tout $n\in\mathbb{N},\,V_n-l>0.$
- 3. En déduire que la suite est décroissante. Conclure.