Fiche 2: Les nombres complexes.

Exercice 1

On considère le complexe $z = 1 + i\sqrt{3}$

- 1. En utilisant les propriétes, calculer $z + \overline{z}$ et $z \overline{z}$.
- 2. Écrire z et \bar{z} sous forme exponentielle et en déduire que $z^5=16\times \bar{z}$.
- 3. En utilisant les propriétes, calculer $z^5 + \bar{z}^5$ et $z^5 \bar{z}^5$.

Exercice 2

Soient

$$u=\left(\sqrt{2+\sqrt{3}}
ight)+i\left(\sqrt{2-\sqrt{3}}
ight), \qquad \quad v=-2+i2\sqrt{3}$$

- 1. Calculer u^2 , puis déterminer le module et un argument de u^2 , puis écrire u^2 sous forme trigonométrique.
- 2. En déduire le module et un argument de u.
- 3. Déterminer z=x+iy où $x,y\in\mathbb{R},$ tel que $z^2=v$
- 4. Déduire les solutions de $\left(\frac{w+i}{w-i}\right)=z$ où w est un nombre complexe $w\neq i$

Exercice 3

Soient

$$u = 1 + i,$$
 $v = -1 + i\sqrt{3}.$

- 1. Déterminer le module et l'argument de u et v.
- 2. Déduire le module et l'argument pour chacune des racines cubiques de u.
- 3. Déterminer le module et un argument de $\frac{u}{v}$.
- 4. En déduire les valeurs de $\cos\left(-\frac{5\pi}{12}\right)$ et $\sin\left(-\frac{5\pi}{12}\right)$.

Exercice 4

- 1. Linéariser les expressions suivantes $(\cos x)^3$ puis $(\sin x)^4$ (formule d'Euler).
- 2. Résoudre dans $\mathbb C$ les équations suivantes

$$iz^2 + 2z + (1-i) = 0,$$
 $z^5 = \overline{z}$

3. Déterminer dans chaque cas l'ensemble des points M du plan complexe d'affixe z tel que:

$$|z - (2 - i)| = \sqrt{2}, \qquad |z + c| \le |1 + \overline{c}z|, \qquad c \in \mathbb{C}^*, \ |c| < 1$$

Exercice 5 (Supp) On considère la fonction f de $\mathbb C$ dans $\mathbb C$ définie par

$$\forall z \in \mathbb{C}, \qquad z \neq -i, \qquad f(z) = \frac{1-z}{1-iz}$$

Déterminer l'ensemble des points tels que $f(z) \in \mathbb{R}$ puis $f(z) \in i \times \mathbb{R}$.