A.U 2025-2026

Exercise 1. Tout ensemble peut être défini par une déscription en compréhension ou en extension; par exemple l'ensemble des entiers impairs est décrit en compréhension par $\{n \in \mathbb{Z} \setminus \exists k \in \mathbb{Z}, n = 2k + 1\}$ et en extension par $\{2k \setminus k \in \mathbb{Z}\}$.

- 1. Décrire en compréhension ensuite en extension l'ensemble $\{1, 2, 4, 8, 16, \cdots\}$.
- 2. Décrire en compréhension l'ensemble [1,2].
- 3. Décrire en extension l'ensemble des nombres complexes C.
- 4. Décrire en compréhension l'ensemble des antécédents d'un réel y par une fonction $f: \mathbb{R} \to \mathbb{R}$

Exercise 2. Soit A, B, C des sous-ensembles de E. Montrer que

- 1. $(A \cup B) \cup C = A \cup (B \cup C)$,
- 2. $(A \cap B) \cap C = A \cap (B \cap C)$,
- 3. $A \cap (B \cup C) = (A \cap B) \cup (A \cap B)$,
- 4. $A (B \cup C) = (A B) \cap (A C)$.

Exercise 3. Soit A, B deux sous-ensembles de E. Montrer que.

- 1. $A \cup B = A \cap B \iff A = B$,
- $2. A \cap B = A \iff A \subseteq B$
- 3. $(A \cap C_E B) \cup (C_E A \cap B) = A \cup B \iff A \cap B = \emptyset$
- 4. $C_E A \backslash C_E B = B \backslash A$.
- 5. $C_E(C_EA) = A$.
- 6. $C_E(A \cup B) = C_E A \cap C_E B$.

Exercise 4. Soit A, B deux parties de E, on appelle différence symétrique de A et B l'ensemble

$$A\Delta B = (A\backslash B) \cup (B\backslash A).$$

 $Montrer\ que$

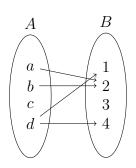
- 1. $A\Delta B = (A \cup B) \setminus (A \cap B)$.
- 2. $A\Delta B = A\Delta C \iff B = C$.

Exercise 5. Soit A, B deux parties de E. Résoudre dans $\mathcal{P}(E)$ l'équation d'inconnu l'ensemble X,

$$A \cap X = B$$
.

Exercise 6. Soit $f = (A, \Gamma, B)$ une relation entre les deux ensembles A, B; définie par son diagramme sagittal

A.U 2025-2026



- 1. S'agit il d'une fonction?
- 2. Déterminer le grpaphe de cette relation.

Exercise 7. Soit A une partie d'un ensemble E. On appelle fonction indicatrice de l'ensemble A, l'application $\chi_A: E \to \mathbb{R}$ définie par

$$\chi_A(x) = \begin{cases} 1 & \text{si } x \in A \\ 0 & \text{sinon.} \end{cases}$$

Déterminer l'ensemble pour lequel; $1 - \chi_A$ est fonction indicatrice.

Exercise 8. Soit $f : \mathbb{R}_+ \to \mathbb{R}$ définie par $f(x) = \frac{x}{x+1}$. Déterminer $\underbrace{f \circ f \circ \cdots \circ f}_{n \text{ fois}}(x)$.

Exercise 9. Les applications suivantes sont-elles injectives, surjectives, bijectives?

1.

$$f_1: \mathbb{N} \to \mathbb{N}$$
 $n \mapsto n+1$

2.

$$f_2: \mathbb{Z} \to \mathbb{Z}$$

 $n \mapsto n+1$

3.

$$f_3: \mathbb{R}^2 \to \mathbb{R}^2$$

 $(x,y) \mapsto (x+y, x-y)$

4.

$$f_3: \mathbb{C} \to \mathbb{C}$$

 $z \mapsto z^2$

A.U 2025-2026

Exercise 10. Soit

$$f: \mathbb{N} \to \mathbb{Z}$$

$$n \mapsto \begin{cases} n/2 \ si \ n \ pair \\ -\frac{n+1}{2} \ sinon. \end{cases}$$

Montrer que f est bien définie et bijective.

Exercise 11. Soit $f: \mathbb{R} \to \mathbb{R}$ définie par $f(x) = \sin x$.

- 1. Déterminer est l'image directe par f de \mathbb{R} , $[0, 2\pi]$, $[0, \frac{\pi}{2}]$.
- 2. Déterminer l'image réciproque par f de [0,1], [3,4], [1,2].

Exercise 12. Soit f une application d'un ensemble E vers un ensemble F. Montrer les deux équivalences suivantes.

$$f \ injective \iff \forall \ X \in \mathbb{P}(E), \ X = f^{-1}(f(X))$$

 $f \ surjective \iff \forall \ Y \in \mathbb{P}(E), \ f(f^{-1}(Y)) = Y.$