Exercise 01:

(1) Let $(\mathbb{R}^4, +, .)$ be the \mathbb{R} - vector space and E_1 a sub space defined by:

$$E_1 = \left\{ (x, y, z, t) \in \mathbb{R}^4 / 2x - y = 3z + t \text{ and } x - 4y + 5z - t = 0 \right\}.$$

Determine the dimension of E_1 .

(2) In $\mathbb{R}_4[X]$ the vector space of polynomials of degree less than or equal to 4 and with real coefficients. We put:

$$E_2 = \left\{ P \in \mathbb{R}_4 [X] / \int_0^1 P(x) dx = 0 \right\}.$$

and

$$E_3 = \{ P \in \mathbb{R}_4 [X] / P(X) - P'(X)(X+2) = 0 \}$$

Find dim E_2 and dim E_3 .

(3) Let $M_3(\mathbb{R})$ be the vector space of the matrices of order 3 and with real coefficients. Let E_4 the subspace of $M_3(\mathbb{R})$ defined by:

$$E_4 = \left\{ A \in M_3 \left(\mathbb{R} \right) / {}^t A = A \right\}$$

Determine the dimension of E_4 .

Exercise 02: (1) Do the following systems form E bases in each case?

- (a) $S_1 = \{(2, 0, 1), (-4, 5, 6)\}$ with $E = \mathbb{R}^3$.
- (b) $S_2 = \{(2,4,1), (-4,5,6), (-1,2,2)\}$ with $E = \mathbb{R}^3$.
- (c) $S_3 = \{-2, 3 + X, X + X^2, 5X^2\}$ with $E = \mathbb{R}_2[X]$.
- (d) $S_4 = \{-3, 3 + X, 5X + X^2\}$ with $E = \mathbb{R}_2[X]$.
- (2) Are the following vectors linearly independent in \mathbb{R}^4 ?

$$v_1(1, 2, -1, 3), v_2(3, -2, 2, -1), v_3(-1, 4, -1, 2).$$

Determine a vector v_4 so that the family $\{v_1, v_2, v_3, v_4\}$ is a basis of \mathbb{R}^4 .

(3) Determine a basis and dimension of F + G where:

$$F = span\{v_1, v_2\}$$
 and $G = span\{v_3, v_4\}$,

with $v_1 = (1, 0, 1, 1), v_2(2, 1, -1, 1), v_3(1, 1, -2, 0)$ and $v_4(0, 0, 0, 1)$.

Exercise 03: In \mathbb{R}^4 let the two subset:

$$E_1 = \{(a, b, c, d) \in \mathbb{R}^4 / b - 2c + d = 0\} \text{ and } E_2 = \{(a, b, c, d) \in \mathbb{R}^4 / a = d \text{ and } b = 2c\}$$

- (1) Determine a basis B_1 of E_1 and a basis B_2 of E_2 .
- (2) Find a basis of $E_1 \cap E_2$.
- (3) deduce $E_1 + E_2$.

Exercise 04: Let E be a k-vector space and f an endomorphism of E such that:

$$f \circ f = f.$$

Show that:

$$E = \ker f \oplus \operatorname{Im} f.$$

Exercise 05: Let E and F be two k-vector spaces, $f \in \mathcal{L}(E, F)$ and $g \in \mathcal{L}(E, F)$ such that:

$$f \circ g \circ f = f$$
 and $g \circ f \circ g = g$.

Show that:

 $E = \ker f \oplus \operatorname{Im} g.$

Exercise 06: Let E be a finite-dimensional k-vector space and f an endomorphism of E. Show that the following properties are equivalent:

(a) ker $f = \ker f^2$; (b) Im $f = \operatorname{Im} f^2$; (c) $E = \ker f \oplus \operatorname{Im} f$.

Exercise 07: The linear application defined by:

$$f : \mathbb{R}^3 \to \mathbb{R}^2$$

(x,y) $\mapsto f(x,y,z) = (2x - 3y + z, 3x - y - 2z).$

Let be $B_2 = \{e_1, e_2, e_3\}$ and $B_3 = \{u_1, u_2\}$ the canonical basis of \mathbb{R}^3 and \mathbb{R}^2 respectively.

- (1) Find the matrix M associated with f relative to the basis B_2 and B_3 .
- (2) Let $C_2 = \{v_1, v_2, v_3\}$ is a basis \mathbb{R}^2 , with $v_1 = (0, 1, 3)$, $v_2 = (-1, 2, 1)$ and $v_3 = (-2, -1, 5)$. and $C_3 = \{w_1, w_2\}$ a basis of \mathbb{R}^3 , with $w_1 = (1, 3)$, $w_2 = (-1, 2)$.
- a) Find the change-of-coordinate matrix P from B_2 to C_2 .
- b) Find the change-of-coordinate matrix Q from B_3 to C_3 .

c) If V has as components
$$\begin{pmatrix} 1\\5\\2 \end{pmatrix}$$
 in B_2 , determine the components of V in the basis C_2 .

d) Deduct the matrix N associated with f relative to the basis C_2 and C_3 . Sincere wishes you success (MESSIRDI BACHIR)