Exercise Serie No. 2

Exercise 1:

In each of the following questions, we are given a set E and subsets A and B of E. Explicitly determine the sets $A \cap B, A \cup B, A \cap C_E(B)$ and $C_E(A) \cap B$.

- 1. $E = \{1, 2, 3, 4\}, \quad A = \{1, 2\}, \quad B = \{2, 4\}.$
- 2. $E = \mathbb{R}, \quad A =] \infty, 2], \quad B = [3, +\infty[.$

Exercise 2:

Let $f : \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = x^2$. Determine the following sets: $f([0,1[), f(]-1,2[), f^{-1}([1,2[), f^{-1}([-1,1]), f^{-1}(\{3\}).$

Exercise 3:

Are the following functions injective, surjective, bijective?

- 1. f from \mathbb{R} to $[0, +\infty)$ defined by $f(x) = x^2$.
- 2. g from $[0, +\infty)$ to $[0, +\infty)$ defined by $g(x) = x^2$.

Exercise 4:

Let *h* be the function from \mathbb{R} to \mathbb{R} defined by $h(x) = \frac{4x}{x^2 + 1}$.

- 1. Verify that for any nonzero real number a, we have $h(a) = h(\frac{1}{a})$. Is the function h injective?
- 2. Let f be defined on $I = [1, +\infty)$ by f(x) = h(x).
 - (a) Show that f is injective.
 - (b) Verify that: $\forall x \in I, f(x) \leq 2$.
- 3. Show that f is a bijection from I onto [0,2] and find f^{-1} .