Abou Bakr Belkaïd University-University of Tlemcen Faculty of Science Department of Informatic

Exercise 1

- 1. Let $a \in \mathbb{R}$, Show that, if a^2 is factor of 2, then a is also factor of 2.
- 2. Show that, the numbers $\log_2(3)$ and $\sqrt{3}$ are irrationals numbers.
- 3. We suppose that π is irrational, show that, the number $\left(\frac{3}{\pi}\right)$ is irrational.
- 4. Show that $\forall (p,q) \in \mathbb{N}, \ p \neq q : (\sqrt{p} + \sqrt{q}) \notin \mathbb{Q} \Rightarrow (\sqrt{p} \sqrt{q}) \notin \mathbb{Q}$.
- 5. (optional). We suppose that $\sqrt{2}$, $\sqrt{3}$ and $\sqrt{6}$ are irrationals. Show that, the numbers $\sqrt{2}$, $\sqrt{3}$, $\sqrt{2} + \sqrt{3}$ are irrationals numbers.
- 6. (optional) We suppose that $\sqrt{2}$ is irrational.
 - (a) Show that $a = 6 + 4\sqrt{2}$ and $b = 6 4\sqrt{2}$ are irrationals numbers.
 - (b) Calculat $\sqrt{a \times b}$, then show that $(\sqrt{a} + \sqrt{b})$ is an rational.

Exercise 2

- 1. Resolve in $\mathbb{R}: |x 1| + |x + 1| = 4$.
- 2. let x and y two real numbers, show that
 - (a) $|x| |y| \le |x y|$.
 - (b) $|x| + |y| \le |x+y| + |x-y|$
- 3. (optional)
 - (a) $1 + |xy 1| \le (1 + |x 1|)(1 + |y 1|).$
 - (b) For all $x \in \mathbb{R}$, we put $f(x) = \frac{|x|}{1+|x|}$. Show that, $\forall x, y \in \mathbb{R}$, $f(x+y) \le f(x) + f(y)$.

Exercise 3

1. Resolve in \mathbb{R}

$$E(\frac{2x+1}{3}) - 2 = 0, \quad E(x+a) = 2, a \in \mathbb{R}. \quad E(x^2 - x + 2) - x = -1,$$

$$E(x) \ge 1, \quad -1 \le E(3x) \le 1, \quad E(x) + |x-1| = x,$$

2. Show that $\forall n \in \mathbb{N}^*$, we have E(x+n) = E(x) + n and $E(\frac{1}{n}E(nx)) = E(x)$.

3. (optional) Let $x, y \in \mathbb{R}$, Show that

$$E(x) + E(y) \le E(x+y)$$

and

$$E(x+y) \le E(x) + E(y) + 1.$$

Exercise 4

1. Give the definition of interval $I \subset \mathbb{R}$.

2. Let
$$A, B, C$$
 the subsets of \mathbb{R} , such that
 $A = \{x \in \mathbb{R}, x^2 < 1\}, B = \{x \in \mathbb{R}, (x-3)(x+2) \ge 0\} \cap [-4, 4],$
 $C = \{x \in \mathbb{R}^*, \frac{1}{x} > 2\}, D = \{x \in \mathbb{R}, -1 \le E(3x) \le 1\} \cup [1, \pi[.$

- (a) Put these sets in the form of an interval of \mathbb{R} , or an interval union.
- (b) Why is the set C not an interval?
- (c) Find the set of all upper bound, lower bound, supremum, infimum, maximum and minimum if there exists.

Exercise 5

1. Find the sets of all upper bound, lower bound, supremum, infimum, maximum and minimum if there exists of:

$$A = \left\{ \frac{x+1}{x+2}, \ x \in \mathbb{R}, x \le -3 \right\}, \quad B = \left\{ \frac{n+3}{n+2}, \ n \in \mathbb{N} \right\}, \quad C = \left\{ (-1)^n + \frac{1}{n^2}, \ n \in \mathbb{N}^* \right\},$$
$$D = \left\{ 2 - \frac{8}{n+4}, \ n \in \mathbb{N} \right\}, \quad E = \left\{ \frac{(-1)^n}{n+1} + \frac{(-1)^n+2}{3}, \ n \in \mathbb{N} \right\}.$$
(D and E optional).

Exercise 6

Let A and B be nonempty subsets of real numbers, prove that

- 1. If $(A \subset B) \Rightarrow (\sup A \leq \sup B)$ et $(\inf B \leq \inf A)$.
- 2. $\inf(A \cup B) = \min\{\inf A, \inf B\}.$
- 3. $\sup(A \cup B) = \max \{ \sup A, \sup B \}$.(optional)