Exercise 1.

Let P, Q, R be three statements. Establish the truth tables of the following statements and deduce whether they are equivalent:

- 1. $P \lor (Q \land R)$ and $(P \lor Q) \land (P \lor R)$
- $2. \ P \implies Q \qquad and \qquad \overline{P} \lor Q$
- 3. $P \implies Q$ and $Q \implies P$

Exercise 2. Let P and Q be two statements.

Show the following equivalences:

- 1. $\overline{P} \Longrightarrow \overline{Q} \Leftrightarrow P \wedge \overline{Q}$
- 2. $P \implies Q \Leftrightarrow \overline{Q} \implies \overline{P}$
- 3. $(P \Leftrightarrow Q) \Leftrightarrow (P \implies Q) \land (Q \implies P)$
- 4. $P \oplus Q \Leftrightarrow (P \wedge \overline{Q}) \vee (\overline{P} \wedge Q)$
- 5. $(P \oplus Q) \oplus Q \Leftrightarrow P$

Are the following statements Tautologies?:

- 1. $P \vee \overline{P}$
- 2. $P \wedge \overline{P}$

Exercise 3. Let P et Q be two statements. Give the negations of the following statements::

- 1. $P \wedge Q$
- 2. $[(P \land Q) \lor R] \implies (P \land R)$
- 3. $P \Leftrightarrow Q$
- 4. $P \oplus Q$

Exercise 4.

- 1. Is the statement: $\forall x \in \mathbb{R}, \exists y \in \mathbb{R}, x^2 + y < 0, \text{ true?}$ Swap the quantifiers and deduce the truth value of the resulting statement.
- 2. Give the negation of the following statement, and say whether it is true or false: $\forall y \in \mathbb{R}, \exists n \in \mathbb{N}, y \leq n$.

 Deduce the truth value of the given statement.

Exercise 5.

- 1. Let $a \in \mathbb{N}$. Study according to the values of a the existence or not of solutions for the equation $x^2 + 2ax + 3 = 0$.
- 2. Show by contraposition that $: \forall p \in \mathbb{N}, p^2 \text{ is even} \implies p \text{ is even}.$
- 3. Use reasoning by contradiction to show the previous statement (supp).
- 4. Show by contradiction that $\sqrt{2}$ is irrational, that is to say $\sqrt{2} \notin \mathbb{Q}$.
- 5. Are the following two statements true:

$$\forall x \in]-\infty, 3[, x^2 < 9,$$

$$\forall x, y \in \mathbb{R}, x^2 + y^2 \ge xy.$$

- 6. Show that for any integer $n \geq 4$, $n! \geq 2^n$.
- 7. Show that $: \forall n \in \mathbb{N}^*, \sum_{k=1}^n k = \frac{1}{2}n(n+1)$. It is given that $\sum_{k=1}^n k = 1 + 2 + 3 + 4 + \dots + n$.
- 8. Shwo that : $\forall n \in \mathbb{N}, 7^n 1$ is divisible by 6.
- 9. Show that $: \forall n \in \mathbb{N}, 4^n + 6n 1 \text{ is a multiple of 9 (supp)}.$