Solution Exercise 1.

- 1. (a) $\forall x \in \mathbb{Z}, x x = 0$, then (x x) is a multiple of 2 and 3, hence \mathcal{R} is reflexive.
 - (b) Let $x, y \in \mathbb{Z}$ such that $x \mathcal{R} y$.

$$x\mathcal{R}y \Longrightarrow (x-y) \text{ is a multiple of } 2 \text{ and } 3.$$

$$\Longrightarrow -(x-y) \text{ is a multiple of } 2 \text{ and } 3.$$

$$\Longrightarrow (y-x) \text{ is a multiple of } 2 \text{ and } 3.$$

$$\Longrightarrow y\mathcal{R}x$$

Then \mathcal{R} is symmetrical.

(c) Let $x, y, z \in \mathbb{Z}$ such that $x \mathcal{R} y$ and $y \mathcal{R} z$.

 $x\mathcal{R}y \text{ and } y\mathcal{R}z \Longrightarrow \exists k, k', l, l' \in \mathbb{Z}, (x-y=2k \text{ and } x-y=3k') \text{ and } (y-z=2l \text{ and } y-z=3l')$ then,

$$x-z = (x-y) + (y-z) = 2k+2l = 2(k+l) \text{ and } x-z = (x-y) + (y-z) = 3k'+3l' = 3(k'+l')$$

hence $x\mathcal{R}z$, i.e. \mathcal{R} is transitive.

- 2. (a) $\forall x \in \mathbb{Z}, x x = 0$, then (x x) is a multiple of 2 or 3, hence \mathcal{P} is reflexive.
 - (b) Let $x, y \in \mathbb{Z}$ such that $x \mathcal{P} y$.

$$x\mathcal{R}y \Longrightarrow (x-y) \text{ is a multiple of } 2 \text{ or } 3.$$
$$\implies -(x-y) \text{ is a multiple of } 2 \text{ or } 3.$$
$$\implies (y-x) \text{ is a multiple of } 2 \text{ or } 3.$$
$$\implies y\mathcal{R}x$$

Then \mathcal{P} is symmetrical.

(c) Let
$$2, 4, 7 \in \mathbb{Z}$$
, then

- $2\mathcal{P}4$ because 2 4 = -2 is a multiple of 2 despite it is not a multiple of 3, but the definition of \mathcal{P} gives the possibility for 2 4 to be a multiple of 2 or a multiple of 3.
- 4P7 because 4 − 7 = −3 is a multiple of 3 despite it is not a multiple of 2, but the definition of P gives the possibility for 4 − 7 to be a multiple of 2 or a multiple of 3.
 But 2P7 because 2 − 7 = 5 is neither à multiple of 2 nor a multiple of 3.
- Then \mathcal{P} is not transitive.
- 3. (a) $\forall (a, a') \in \mathbb{N} \times \mathbb{N}, \ a + a' = a + a' \Longrightarrow (a, a') \mathcal{S}(a, a'), \ then \ \mathcal{S} \ is \ reflexive.$
 - (b) Let $(a, a'), (b, b') \in \mathbb{N} \times \mathbb{N}$ such that $(a, a')\mathcal{S}(b, b')$.

$$(a, a')\mathcal{S}(b, b') \Longrightarrow a + a' = b + b'$$
$$\Longrightarrow b + b' = a + a'$$
$$\Longrightarrow (b, b')\mathcal{S}(a, a')$$

Hence S is symmetrical.

(c) Let
$$(a, a'), (b, b'), (c, c') \in \mathbb{N} \times \mathbb{N}$$
 such that $(a, a')\mathcal{S}(b, b')$ and $(b, b')\mathcal{S}(c, c')$.

$$(a, a')\mathcal{S}(b, b') \text{ and } (b, b')\mathcal{S}(c, c') \Longrightarrow a + a' = b + b' \text{ and } b + b' = c + c'$$
$$\Longrightarrow a + a' = c + c'$$
$$\Longrightarrow (a, a')\mathcal{S}(c, c')$$

Then S is transitive.

The relations \mathcal{R} and \mathcal{S} are equivalence relations.

Solution Exercise 2.

- 1. Let's show that \mathcal{P} is reflexive. Let $x \in \mathbb{R}$, then $\cos^2 x + \sin^2 x = 1$ hence, $x\mathcal{P}x$, i.e. \mathcal{P} is reflexive.
- 2. Let $x, y \in \mathbb{R}$ such that $x \mathcal{P} y$.

$$x\mathcal{P}y \Longrightarrow \cos^2 x + \sin^2 y = 1$$
$$\Longrightarrow 1 - \sin^2 x + 1 - \cos^2 y = 1$$
$$\Longrightarrow \cos^2 y + \sin^2 x = 1$$
$$\Longrightarrow y\mathcal{P}x$$

then \mathcal{P} is symmetrical.

3. Let $x, y, z \in \mathbb{R}$ such that $x \mathcal{P} y$ and $y \mathcal{P} z$.

$$x\mathcal{P}y \text{ and } y\mathcal{P}z \Longrightarrow \begin{cases} \cos^2 x + \sin^2 y = 1\\ \cos^2 y + \sin^2 z = 1 \end{cases}$$
$$\implies \cos^2 x + \sin^2 y + \cos^2 y + \sin^2 z = 2$$
$$\implies \cos^2 x + \sin^2 z = 1$$
$$\implies x\mathcal{P}z$$

then \mathcal{P} is transitive.

We conclude that \mathcal{P} is an equivalence relation.

Solution Exercise 3.

1. (a) Let $x \in \mathbb{Z}$, then $x - x = 0 = 7 \cdot 0$, hence $x \mathcal{R} x$. \mathcal{R} is reflexive. (b) Let $x, y \in \mathbb{Z}$ such that $x \mathcal{R} y$.

$$\begin{aligned} x\mathcal{R}y &\Longrightarrow \exists m_i n\mathbb{Z}, \ x - y = 7m \\ &\Longrightarrow y - x = 7m' \text{ with } m' = -m \in \mathbb{Z} \\ &\Longrightarrow y\mathcal{R}x \\ &\Longrightarrow \mathcal{R} \text{ is symmetrical.} \end{aligned}$$

(c) Let $x, xy, z \in \mathbb{Z}$ such that, $x\mathcal{R}y$ and $y\mathcal{R}z$.

$$x\mathcal{R}y \text{ and } y\mathcal{R}z \Longrightarrow \exists m, m' \in \mathbb{Z}, \ x - y = 7m \text{ and } y - z = 7m'$$

 $\Longrightarrow x - z = 7m'', \text{ with } m'' = m + m' \in \mathbb{Z}$
 $\Longrightarrow x\mathcal{R}z$
 $\Longrightarrow \mathcal{R} \text{ is transitive.}$

Then \mathcal{R} is an equivalence relation on \mathbb{Z} .

2. Let $x \in \mathbb{Z}$ then $\overline{x} = \{y \in \mathbb{Z}, y\mathcal{R}x\}$.

$$y\mathcal{R}x \iff \exists m \in \mathbb{Z}, y - x = 7m$$
$$\iff y = 7m + x$$

This means that the equivalence class of $x \in \mathbb{Z}$ is the set of the integers y whose remainder of its Euclidian division by 7 is x. But in the Euclidiant division of an integer y by 7, the remainder can be one of the following : 0, 1, 2, 3, 4, 5, 6 and no one more. That is, any integer divided by 7 has one of the previous remainder. So some¹ integers will have as remainder 0, other ones will have 1 as remainder and so on till the last integers who have 6 as reainder, and hence no more intergers are left. So the equivalence classes are : $\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}, \overline{6}$

^{1.} I wrote *some* but the reality is that there are infinite integers who have the same remainder.

3. The quotient set is :

$$\mathbb{Z}/\mathcal{R} = \mathbb{Z}/7\mathbb{Z} = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}, \overline{6}\}$$

Solution Exercise 4.

1. (a) Let $p \in \mathbb{N}^*$ then $p^1 = p$, hence $\exists n = 1 \in \mathbb{N}^*, p^n = p$ i.e. $p\mathcal{T}p$, that is \mathcal{T} is reflexive. (b) Let $p, q \in \mathbb{N}^*$ such that $p\mathcal{T}q$ and $q\mathcal{T}p$.

$$p\mathcal{T}q \text{ and } q\mathcal{T}p \Longrightarrow \exists n, m \in \mathbb{N}^*, \ p^n = q \text{ and } q^m = p$$
$$\Longrightarrow (q^n)^m = q$$
$$\Longrightarrow q^{nm} = q$$
$$\Longrightarrow n = m = 1 \text{ because } n, m \in \mathbb{N}^*$$
$$\Longrightarrow p = q$$
$$\Longrightarrow \mathcal{T} \text{ is antisymmetric.}$$

(c) Let $p, q, r \in \mathbb{N}^*$ such that $p\mathcal{T}q$ and $q\mathcal{T}r$.

$$p\mathcal{T}q \text{ and } q\mathcal{T}r \Longrightarrow \exists n, m \in \mathbb{N}^*, \ p^n = q \text{ and } q^m = r$$
$$\Longrightarrow (p^n)^m = r$$
$$\Longrightarrow \exists l \in \mathbb{N}^*, \ p^l = r \text{ with } l = nm \in \mathbb{N}^*$$
$$\Longrightarrow \mathcal{T} \text{ is transitive.}$$

Then \mathcal{T} is an order relation.

2. \mathcal{T} is a partial order. Take for example p = 3 and q = 4, $p, q \in \mathbb{N}^*$, then $\forall n \in \mathbb{N}^*$, $p^n \neq q$ and $\forall n \in \mathbb{N}^*$, $q^n \neq p$ that is $p\mathcal{T}q$ and $q\mathcal{T}p$.