Solution Exercise 1.

- *1.* (a) ∀ $x \in \mathbb{Z}$, $x x = 0$, then $(x x)$ is a multiple of 2 and 3, hence R is reflexive.
	- *(b) Let* $x, y \in \mathbb{Z}$ *such that* $x \mathcal{R} y$ *.*

$$
x\mathcal{R}y \Longrightarrow (x-y) \text{ is a multiple of 2 and 3.}
$$

\n
$$
\Longrightarrow -(x-y) \text{ is a multiple of 2 and 3.}
$$

\n
$$
\Longrightarrow (y-x) \text{ is a multiple of 2 and 3.}
$$

\n
$$
\Longrightarrow y\mathcal{R}x
$$

Then R *is symmetrical.*

(c) Let $x, y, z \in \mathbb{Z}$ *such that* $x \mathcal{R} y$ *and* $y \mathcal{R} z$ *.*

 $x\mathcal{R}y$ and $y\mathcal{R}z \Longrightarrow \exists k, k', l, l' \in \mathbb{Z}, (x-y=2k \text{ and } x-y=3k')$ and $(y-z=2l \text{ and } y-z=3l')$ *then,*

$$
x-z = (x-y)+(y-z) = 2k+2l = 2(k+l) \text{ and } x-z = (x-y)+(y-z) = 3k'+3l' = 3(k'+l')
$$

*hence x*R*z, i.e.* R *is transitive.*

- *2. (a)* ∀ $x \in \mathbb{Z}$, $x x = 0$, then $(x x)$ *is a multiple of* 2 *or* 3*, hence* \mathcal{P} *is reflexive.*
	- *(b)* Let $x, y \in \mathbb{Z}$ *such that* $x \mathcal{P} y$ *.*

$$
x\mathcal{R}y \Longrightarrow (x-y) \text{ is a multiple of 2 or 3.}
$$

\n
$$
\Longrightarrow -(x-y) \text{ is a multiple of 2 or 3.}
$$

\n
$$
\Longrightarrow (y-x) \text{ is a multiple of 2 or 3.}
$$

\n
$$
\Longrightarrow y\mathcal{R}x
$$

Then P *is symmetrical.*

(c) Let
$$
2, 4, 7 \in \mathbb{Z}
$$
, then

- *—* 2P4 *because* 2 − 4 = −2 *is a multiple of* 2 *despite it is not a multiple of* 3*, but the definition of* P *gives the possibiity for* $2 - 4$ *to be a multiple of* 2 *or a multiple of* 3 *.*
- *—* 4P7 *because* 4 − 7 = −3 *is a multiple of* 3 *despite it is not a multiple of* 2*, but the definition of* P *gives the possibiity for* $4 - 7$ *to be a multiple of* 2 *or a multiple of* 3 *. — But* 2P7 *because* 2 − 7 = 5 *is neither à multiple of* 2 *nor a multiple of* 3*.*
- *Then* P *is not transitive.*
- *3. (a)* $\forall (a, a') \in \mathbb{N} \times \mathbb{N}, a + a' = a + a' \implies (a, a')\mathcal{S}(a, a'), \text{ then } \mathcal{S} \text{ is reflexive.}$
	- (b) Let $(a, a'), (b, b') \in \mathbb{N} \times \mathbb{N}$ such that $(a, a')\mathcal{S}(b, b')$.

$$
(a, a')S(b, b') \Longrightarrow a + a' = b + b'
$$

$$
\Longrightarrow b + b' = a + a'
$$

$$
\Longrightarrow (b, b')S(a, a')
$$

Hence S *is symmetrical.*

(c) Let
$$
(a, a')
$$
, (b, b') , $(c, c') \in \mathbb{N} \times \mathbb{N}$ such that $(a, a')\mathcal{S}(b, b')$ and $(b, b')\mathcal{S}(c, c')$.

$$
(a, a')S(b, b') \text{ and } (b, b')S(c, c') \implies a + a' = b + b' \text{ and } b + b' = c + c'
$$

$$
\implies a + a' = c + c'
$$

$$
\implies (a, a')S(c, c')
$$

Then S *is transitive.*

The relations R *and* S *are equivalence relations.*

Solution Exercise 2.

- *1.* Let's show that P is reflexive. Let $x \in \mathbb{R}$, then $\cos^2 x + \sin^2 x = 1$ hence, xPx , i.e. P is reflexive.
- 2. Let $x, y \in \mathbb{R}$ such that $x \mathcal{P} y$.

$$
x \mathcal{P} y \Longrightarrow \cos^2 x + \sin^2 y = 1
$$

\n
$$
\Longrightarrow 1 - \sin^2 x + 1 - \cos^2 y = 1
$$

\n
$$
\Longrightarrow \cos^2 y + \sin^2 x = 1
$$

\n
$$
\Longrightarrow y \mathcal{P} x
$$

then P *is symmetrical.*

3. Let $x, y, z \in \mathbb{R}$ *such that* $x \mathcal{P} y$ *and* $y \mathcal{P} z$ *.*

$$
x \mathcal{P}y \text{ and } y \mathcal{P}z \Longrightarrow \begin{cases} \cos^2 x + \sin^2 y = 1\\ \cos^2 y + \sin^2 z = 1 \end{cases}
$$

$$
\Longrightarrow \cos^2 x + \sin^2 y + \cos^2 y + \sin^2 z = 2
$$

$$
\Longrightarrow \cos^2 x + \sin^2 z = 1
$$

$$
\Longrightarrow x \mathcal{P}z
$$

then P *is transitive.*

We conclude that P *is an equivalence relation.*

Solution Exercise 3.

1. (a) Let $x \in \mathbb{Z}$, then $x - x = 0 = 7 \cdot 0$, hence $x \mathcal{R} x$. R *is reflexive. (b)* Let $x, y \in \mathbb{Z}$ *such that* $x \mathcal{R} y$ *.*

$$
x\mathcal{R}y \Longrightarrow \exists m_i n\mathbb{Z}, \ x - y = 7m
$$

$$
\Longrightarrow y - x = 7m' \text{ with } m' = -m \in \mathbb{Z}
$$

$$
\Longrightarrow y\mathcal{R}x
$$

$$
\Longrightarrow \mathcal{R} \text{ is symmetrical.}
$$

(c) Let $x, xy, z \in \mathbb{Z}$ *such that,* $x \mathcal{R} y$ *and* $y \mathcal{R} z$ *.*

$$
x\mathcal{R}y \text{ and } y\mathcal{R}z \Longrightarrow \exists m, m' \in \mathbb{Z}, \ x - y = 7m \text{ and } y - z = 7m'
$$

$$
\Longrightarrow x - z = 7m'', \text{ with } m'' = m + m' \in \mathbb{Z}
$$

$$
\Longrightarrow x\mathcal{R}z
$$

$$
\Longrightarrow \mathcal{R} \text{ is transitive.}
$$

Then R *is an equivalence relation on* Z*.*

2. Let $x \in \mathbb{Z}$ then $\overline{x} = \{y \in \mathbb{Z}, y\mathcal{R}x\}.$

$$
y\mathcal{R}x \Longleftrightarrow \exists m \in \mathbb{Z}, y - x = 7m
$$

$$
\Longleftrightarrow y = 7m + x
$$

This means that the equivalence class of $x \in \mathbb{Z}$ *is the set of the integers y whose remainder of its Euclidian division by 7 is x. But in the Euclidiant division of an integer y by 7, the remainder can be one of the following :* 0*,* 1*,* 2*,* 3*,* 4*,* 5*,* 6 *and no one more. That is, any integer divided by 7 has one of the previous remainder. So some*¹ integers will have as remainder 0, other ones *will have* 1 *as remainder and so on till the last integers who have* 6 *as reainder, and hence no more intergers are left. So the equivalence classes are :* $\overline{0}$, $\overline{1}$, $\overline{2}$, $\overline{3}$, $\overline{4}$, $\overline{5}$, $\overline{6}$

^{1.} I wrote *some* but the reality is that there are infinite integers who have the same remainder.

3. The quotient set is :

$$
\mathbb{Z}/\mathcal{R} = \mathbb{Z}/7\mathbb{Z} = \{\overline{0},\overline{1},\overline{2},\overline{3},\overline{4},\overline{5},\overline{6}\}
$$

Solution Exercise 4.

1. (a) Let $p \in \mathbb{N}^*$ then $p^1 = p$, hence $\exists n = 1 \in \mathbb{N}^*, p^n = p$ *i.e.* $p \mathcal{T} p$, that is \mathcal{T} is reflexive. *(b)* Let $p, q \in \mathbb{N}^*$ *such that* $p \mathcal{T} q$ *and* $q \mathcal{T} p$ *.*

$$
p\mathcal{T}q \text{ and } q\mathcal{T}p \Longrightarrow \exists n, m \in \mathbb{N}^*, \ p^n = q \text{ and } q^m = p
$$

\n
$$
\Longrightarrow (q^n)^m = q
$$

\n
$$
\Longrightarrow q^{nm} = q
$$

\n
$$
\Longrightarrow n = m = 1 \text{ because } n, m \in \mathbb{N}^*
$$

\n
$$
\Longrightarrow p = q
$$

\n
$$
\Longrightarrow \mathcal{T} \text{ is antisymmetric.}
$$

(c) Let $p, q, r \in \mathbb{N}^*$ *such that* $p \mathcal{T} q$ *and* $q \mathcal{T} r$ *.*

$$
p\mathcal{T}q \text{ and } q\mathcal{T}r \Longrightarrow \exists n, m \in \mathbb{N}^*, \ p^n = q \text{ and } q^m = r
$$

\n
$$
\Longrightarrow (p^n)^m = r
$$

\n
$$
\Longrightarrow \exists l \in \mathbb{N}^*, \ p^l = r \text{ with } l = nm \in \mathbb{N}^*
$$

\n
$$
\Longrightarrow \mathcal{T} \text{ is transitive.}
$$

Then $\mathcal T$ *is an order relation.*

2. *T* is a partial order. Take for example $p = 3$ and $q = 4$, $p, q \in \mathbb{N}^*$, then $\forall n \in \mathbb{N}^*$, $p^n \neq q$ and $\forall n \in \mathbb{N}^*, q^n \neq p$ that is $p\mathcal{F}q$ and $q\mathcal{F}p$.