Algebra 1 Solutions Tutorials series $N^o 1$ Logic Concepts

Solution Exercise 1.

1.
$$
P \vee (Q \wedge R)
$$
 and $(P \vee Q) \wedge (P \vee R)$

The two columns Ω and Ω are identical, then the two statements are equivalent. *2. P* \implies *Q and* $\overline{P} \vee Q$

The two columns Ω and Ω are identical, then the two statements are equivalent. *3.* $P \implies Q$ *and* $Q \implies P$

The two columns Ω *and* Ω *are not identical, then there is no equivalence between the two statements.*

Solution Exercise 2. *Let's show the equivalences :*

$$
1. \overline{P \implies Q} \equiv {}^{1}P \wedge \overline{Q}
$$

The two columns $\textcircled{1}$ and $\textcircled{2}$ are identical, then the two statements are equivalent.

^{1.} \equiv is another notation for the equivalence.

2. $P \implies Q \equiv \overline{Q} \implies \overline{P}$

The two columns Ω and Ω are identical, then the two statements are equivalent. *3.* $(P \Leftrightarrow Q) \equiv (P \implies Q) \land (Q \implies P)$

				$P Q P \Longleftrightarrow Q P \Longrightarrow Q Q \Longrightarrow P (P \Longrightarrow Q) \land (Q \Longrightarrow P)$

The two columns Ω and Ω are identical, then the two statements are equivalent. *4. P* ⊕ *Q* ≡ (*P* ∧ *Q*) ∨ (*P* ∧ *Q*)

The two columns $\textcircled{1}$ and $\textcircled{2}$ are identical, then the two statements are equivalent. *5.* $(P \oplus Q) \oplus Q \equiv P$

The two columns Ω and Ω are identical, then the two statements are equivalent. *Let's now verify if the given statments are tautologies*

1. P ∨ *P*

The last column contains just ones, hence the statement is a tautology. 2. P ∧ *P*

The last column contains just zeros, then the statement is not a tautology ; it's rather a contradiction*.*

Solution Exercise 3.

1.

$$
\overline{P \wedge Q} \equiv \overline{P} \vee \overline{Q}
$$

2.

$$
\overline{[(P \land Q) \lor R]} \implies (P \land R) \equiv [(P \land Q) \lor R] \land (\overline{P \land R})
$$

$$
\equiv [(P \land Q) \lor R] \land (\overline{P} \lor \overline{R})
$$

3.

$$
\overline{P \Leftrightarrow Q} \equiv \overline{(P \Longrightarrow Q) \land (Q \Longrightarrow P)}
$$

$$
\equiv \overline{(P \Longrightarrow Q)} \lor \overline{(Q \Longrightarrow P)}
$$

$$
\equiv (P \land \overline{Q}) \lor (Q \land \overline{P})
$$

This means that the negation of : P and *Q* are equivalent*, is :* one of the statements is true and the other is false*.*

4.

$$
\overline{P \oplus Q} \equiv \overline{(P \land \overline{Q}) \lor (Q \land \overline{P})}
$$

\n
$$
\equiv (\overline{P} \lor Q) \land (\overline{Q} \lor P)
$$

\n
$$
\equiv (P \Longrightarrow Q) \land (Q \Longrightarrow P)
$$

\n
$$
\equiv P \Longleftrightarrow Q
$$

Solution Exercise 4.

1. Is the statement : $\forall x \in \mathbb{R}, \exists y \in \mathbb{R}, x^2 + y < 0, \text{ true?}$ *It's clear that for any* $x \in \mathbb{R}$, $x^2 \geq 0$ *. Is there a* $y \in \mathbb{R}$ *such that* $x^2 + y < 0$? Let's consider y *as the unknown of the inequation and let's try to solve it :*

$$
x^2 + y < 0 \Longrightarrow y < -x^2
$$

and that's it, every $y \in \mathbb{R}$ such that $y < -x^2$, and not just an only one, will do the job i.e. $x^2 + y < 0$. Hence this statement is true.

Now let's swap the quantifiers :

• *We obtain the following statement :*

$$
\exists y \in \mathbb{R}, \ \forall x \in \mathbb{R}, \ x^2 + y < 0
$$

For $y \geq 0$ *the inequality* $x^2 + y < 0$ *is obviously false for any* $x \in \mathbb{R}$ *. So for the inequality to hold, it's necessary that* $y < 0$ *, but in this case :*

$$
x^2 + y < 0 \Longrightarrow -\sqrt{-y} < x < \sqrt{y}
$$

hence for $x \in]-\infty, -$ √ $\boxed{-y}$ \cup $[\sqrt{y}, +\infty[$ *the inequality doesn't hold. Conclusion : the statement is false.*

• *Another way to make the swap is the following statement :*

$$
\exists x \in \mathbb{R}, \forall y \in \mathbb{R}, x^2 + y < 0
$$

This statement is obviously false, because for any $x \in \mathbb{R}$, if $y = -x^2$ then we obtain $x^2 + y = 0$ *i.e. the inequality is not verified. Hence this statement is also false.*

2. Let's write the negation of the statement : $\forall y \in \mathbb{R}, \exists n \in \mathbb{N}, y \leq n$:

$$
\overline{\forall y \in \mathbb{R}, \exists n \in \mathbb{N}, y \leq n} \Longleftrightarrow \exists y \in \mathbb{R}, \forall n \in \mathbb{N}, y > n
$$

This statement is false, because for $y \in \mathbb{R}_+$, then $y \leq 0$ which contradicts the statement and *if* $y \in \mathbb{R}_+$, then *if* we take $n = [y] + 1$, we obtain $y < n$ which is a contradiction too with the *statement.* [*y*] *is called the* integer part*, it is the greatest integer less than or equal to y. We deduce that the original statement is true.*

Solution Exercise 5.

1. $x^2 + 2ax + 3 = 0$ *is a second degree equation of variable x. We will use a direct reasoning to study this equation. The discriminant of the equation is then* $\Delta = 4a^2 - 12$, so : *stuay this equation.* The aiscriminant of the equation is then $\Delta = 4a^2 - 12$, so:
 $\Delta > 0 \Longleftrightarrow \{a < -\sqrt{3} \text{ or } \sqrt{3} < a\}, \Delta = 0 \Longleftrightarrow a = \pm\sqrt{3} \text{ and } \Delta < 0 \Longleftrightarrow \{-\sqrt{3} < a < \sqrt{3}\}.$ *Hence :* √ √

(a) If $a \in] −\infty, −$ 3[∪] 3*,* +∞[*then the equation has two solutions :*

$$
x_1 = \frac{-2a - \sqrt{\Delta}}{2}
$$
 $x_2 = \frac{-2a + \sqrt{\Delta}}{2}$

(b) If $a = \pm$ √ 3*, the equation has a unique solution :*

$$
x = \frac{-2a}{2} = -a
$$
 hence $x = \sqrt{3}$ if $a = -\sqrt{3}$ and $x = -\sqrt{3}$ if $a = \sqrt{3}$

(c) If $a \in$ | − √ 3*,* √ 3[*then the equation has no solutions.*

If we suppose $a \in \mathbb{N}$, then $\Delta \neq 0$, hence there is just two cases :

(a) If $a \in \{2, 3, 4, \ldots\}$ then the equation has two solutions :

$$
x_1 = \frac{-2a - \sqrt{\Delta}}{2}
$$
 $x_2 = \frac{-2a + \sqrt{\Delta}}{2}$

(b) If $a \in \{0, 1\}$ *then the equation has no solutions.*

2. We have to show by contraposition that : $\forall p \in \mathbb{N}, p^2$ is even $\implies p$ is even. *We have the equivalence :*

 $(p^2 \text{ is even} \implies p \text{ is even}) \Longleftrightarrow (p \text{ is odd} \implies p^2 \text{ is odd})$

Let's show the second implication which is easier to do : If $p \in \mathbb{N}$ *such that* p *is odd, that is* ∃ $k \in \mathbb{N}$ *,* $p = 2k + 1$ *, then* $p^2 = (2k + 1)^2 = 2k' + 1$ *with* $k' = 2k^2 + 2k \in \mathbb{N}$, which means that p^2 is odd, and here we'r finished.

3. Let's try to prove by contradiction the same statement. (supplementary question) $Suppose that: \overline{\forall p \in \mathbb{N}, p^2 \text{ is even}} \implies p \text{ is even, is true, that is } \exists p \in \mathbb{N}, p^2 \text{ is even and } p \text{ is odd.}$

$$
p \text{ is odd} \Longrightarrow \exists k \in \mathbb{N}, p = 2k + 1
$$

\n
$$
\Longrightarrow p^2 = 2k' + 1
$$

\n
$$
\Longleftrightarrow p^2 \text{ is odd, this is a contradiction with the hypothesis which says that } p^2 \text{ is even.}
$$

4. Now we show by contradiction that $\sqrt{2} \notin \mathbb{Q}$. *Soppose that* $\sqrt{2} \in \mathbb{Q}$, hence there exists $p \in \mathbb{N}$ and $q \in \mathbb{N}^*$ such that $\sqrt{2} =$ *p q with* $\frac{p}{q}$ *q being reduced i.e.* 1 *is the only common divisor for* p *and* q *.* $2 =$ *p q implies that* $p^2 = 2q^2$, this means that p^2 *is even and hence p is even too (take a look* *at the question* 2*).*

p is even is equivalent to say that there exists a $k \in \mathbb{N}$ such that $p = 2k$. We obtain, then, from $p^2 = 2q^2$ that $4k^2 = 2q^2$ and hence $q^2 = 2k^2$ and like p, we obtain that *q is even too, which means that* 2 *is a common divisor of p and q and this is a contradiction* $\frac{p}{p}$ *because the fraction* $\frac{p}{q}$ *q is reduced.*

- *5. This statement* $\forall x \in]-\infty, 3[, x^2 < 9$ *is false, we can prove it by a counter example : Let* $x = -4$ *, then* $x \in]-\infty, 3[$ *but* $x^2 = 16 > 9$ *. The statement* $\forall x, y \in \mathbb{R}, x^2 + y^2 \geq xy$ *is true, we will prove it by a direct reasoning.* Let $x, y \in \mathbb{R}$, then $(x - y)^2 \ge 0$ hence $x^2 + y^2 - 2xy \ge 0$ which leads to $x^2 + y^2 \ge 2xy$, here we *have two cases :*
- *case 1 : xy* < 0 *i.e. x* and *y* are of opposite signs, then $x^2 + y^2 \geq xy$ is obvious since $x^2 + y^2 > 0$ and $xy < 0$.
- *case 2 :* $xy > 0$ *i.e. x and y are both positive or both negative, then if we multiply the inequality* $2 > 1$ by xy, its direction doesn't change and we obtain $2xy > xy$. Hence $x^2 + y^2 \geq xy$. *(The null case i.e.* $x = 0$ *or* $y = 0$ *or* $x = y = 0$ *is included in this case 2).*
- 6. We show by induction that for any integer $n \geq 4$, $n! \geq 2^n$. **1.***Initialization :* For $n = 4$ we have :

$$
4! = 24 \ge 2^4 = 16
$$

2. **Heredity** : Suppose that for a given $n \geq 4$ we have $n! \geq 2^n$. Using this hypothesis, let's *show that* $(n + 1)! \ge 2^{n+1}$.

$$
(n+1)! = (n+1) \cdot n!
$$

\n
$$
\ge (n+1) \cdot 2^n \text{ because of the induction hypothesis}
$$

\n
$$
\ge 2 \cdot 2^n \text{ because } \forall n \ge 4, n+1 > 2
$$

\n
$$
= 2^{n+1}
$$

- 3. *Conclusion* : $\forall n \geq 4, n! \geq 2^n$.
- *7.* Let's prove by induction the statement : $\forall n \in \mathbb{N}^*, \sum_{i=1}^n$ *k*=1 $k =$ 1 2 $n(n+1)$ *. with* $\sum_{n=1}^{n}$ *k*=1 $k = 1 + 2 + 3 +$ $4 + \cdots + n$ *. In order to lighten the writing let's put :*

$$
A(n) = \sum_{k=1}^{n} k
$$
 and $B(n) = \frac{1}{2}n(n+1)$

1.*Initialization :* **For** $n = 1$ **, we have** $A(1) = B(1)$ **, that is :**

$$
\sum_{k=1}^{1} k = \frac{1}{2} \cdot 1 \cdot (1+1)
$$

 $because : \sum$ 1 *k*=1 $k=1$ and $\frac{1}{2}$ 2 $\cdot 1 \cdot (1+1) = \frac{1}{2}$ 2 $\cdot 1 \cdot (2) = 1.$ 2. **Heredity**: Suppose that for a given $n \in \mathbb{N}^*$ we have $A(n) = B(n)$. Let's prove that $A(n+1) =$

$$
B(n + 1) \ i.e. \ \sum_{k=1}^{n+1} k = \frac{1}{2}(n + 1)(n + 2).
$$

\n
$$
A(n + 1) = \sum_{k=1}^{n+1} k
$$

\n
$$
= 1 + 2 + 3 + 4 + \dots + n + (n + 1)
$$

\n
$$
= \sum_{k=1}^{n} k + (n + 1)
$$

\n
$$
= A(n) + (n + 1)
$$

\n
$$
= B(n) + (n + 1) \text{ because of the induction hypothesis}
$$

\n
$$
= \frac{1}{2}n(n + 1) + (n + 1)
$$

\n
$$
= \frac{n(n + 1) + 2(n + 1)}{2}
$$

\n
$$
= \frac{n^2 + 3n + 2}{2}
$$

\n
$$
= \frac{(n + 1)(n + 2)}{2}
$$

\n
$$
= \frac{1}{2}(n + 1)(n + 2)
$$

\n
$$
= B(n + 1)
$$

 $3.$ *Conclusion* : $\forall n \in \mathbb{N}^*, \ \sum^n$ *k*=1 $k =$ 1 2 $n(n+1)$

8. We will show by induction that : $\forall n \in \mathbb{N}, T^n - 1$ *is divisible by* 6*.* 1*.Initialization : For* $n = 0$ *we have* $7^0 - 1 = 1 - 1 = 0$ *and* 0 *is divisible by* 6*.* 2. **Heredity** : Suppose that for a given $n \in \mathbb{N}$, $7^n - 1$ is divisible by 6. Let's show that $7^{n+1} - 1$ *est divisible by* 6*.*

$$
7^{n+1} - 1 = 7 \cdot 7^n - 1
$$

= (6 + 1) \cdot 7^n - 1
= 6 \cdot 7^n + 7^n - 1

 $6 \cdot 7^n$ *is divisible by* 6 *and by induction hypothesis* $7^n - 1$ *is also divisible by* 6 *then* $6 \cdot 7^n + 7^n - 1$ *is divisible by* 6*, that is* $7^{n+1} - 1$ *is divisible by* 6*.* 3. **Conclusion** : $\forall n \in \mathbb{N}, T^n - 1$ is divisible by 6.

9. Now we show that $: \forall n \in \mathbb{N}, 4^n + 6n - 1$ *is a multiple of* 9 *(supp). Put* $P(n)$: $4^n + 6n - 1$ *is a multiple of* 9*.* 1*.Initialization : For* $n = 0$ *we have* $P(0) : 4^0 + 6 \cdot 0 - 1 = 0$ *and* 0 *is a multiple of* 9*.* $P(0)$ *is then verified.* 2 *.Heredity : Suppose that* $P(n)$ *is verified for a given* $n \in \mathbb{N}$ *, that is* $\exists k_n \in \mathbb{N}$ *,* $4^n + 6n - 1 = 9k_n$ *. Let's show that* $P(n+1)$ *is also verified.* $P(n+1)$ *is given by :* $4^{n+1} + 6(n+1) - 1$ *is a multiple*

of 9*.*

$$
4^{n+1} + 6(n+1) - 1 = 4 \cdot 4^n + 6n + 6 - 1
$$

= (1+3) \cdot 4^n + 6n - 1 + 6
= 4^n + 6n - 1 + 3 \cdot 4^n + 6
= 9 \cdot k + 3 \cdot 4^n + 6 because of the induction hypothesis
= 9 \cdot k_n + 3(9k_n - 6n + 1) + 6
the formula $9k_n - 6n + 1$ is derived from the induction hypothesis
= 9(k_n + 3k_n - 2n + 1)
= 9(4k_n - 2n + 1)
= 9k'_n with k'_n = 4k_n - 2n + 1 \in \mathbb{N}

Hence $P(n+1)$ *is verified.* 3. **Conclusion** : $\forall n \in \mathbb{N}, 4^n + 6n - 1$ is a multiple of 9