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Logic Concepts

Solution Exercise 1.

1. PV(QAR) and (PVQ)A(PVR)
PIQIR|QAR|PVQAR|PVQ|PVR][(PVQ A(PVR)
1] 1] 1 1 1 1 1
1/1]o] o 1 1 1 1
1lo[1] o 1 1 1 1
1/ofo] o 1 1 1 1
ol1l1] 1 1 1 1 1
ol1]o] o 0 1 0 0
olof[1] o 0 0 1 0
ololo] o 0 0 0 0

@ @

The two columns (1) and 2) are identical, then the two statements are equivalent.
2. P = Q and PVQ

PlQ|P=Q|P|PVQ
111 1 0 1
110 0 0 0
01 1 1 1
010 1 1 1
@ @

The two columns (D) and 2) are identical, then the two statements are equivalent.
3. P = @ and Q = P

PlQIP=Q|Q=TP
1)1 1 1
1]0 0 1
0]1 1 0
0]0 1 1
@ @

The two columns ) and 2) are not identical, then there is no equivalence between the two
statements.

Solution Exercise 2. Let’s show the equivalences :
I.P = Q='PAQ

P—Q|P—=Q|P

Q)

Q
0
1
0
1

P
1
1
0
0

Q
1
0
1
0

»—.—o»—lﬂ

—
0
1
0
0

o|lo|lR|Oo|>

@ @

The two columns (1) and ) are identical, then the two statements are equivalent.

1. = is another notation for the equivalence.



P|QIP|QIP=Q|Q=P
1100 1 1
1/0/0]1 0 0
0/1]1]0 1 1
01011 1 1
@ @

The two columns (D) and ) are identical, then the two statements are equivalent.
3. (Pe)=(P = QNQ = P)

PlQP—=Q|P=Q|Q=—P|(P=Q) N(Q=P)
1)1 1 1 1 1
110 0 0 1 0
011 0 1 0 0
00 1 1 1 1
@® @

The two columns () and (2) are identical, then the two statements are equivalent.

4. PoQ=(PANQ)V(PAQ)

PlQIP|Q|P®Q|PANQ|PANQ|(PAQ)V(PAQ)
1/1]0]0 0 0 0 0
10|01 1 1 0 1
0]1]1]0 1 0 1 1
0011 0 0 0 0

@ @

The two columns (1) and ) are identical, then the two statements are equivalent.
5 (PeQ)deQ=P

PIQ|PDQ|(POQ)DQ
11 0 1
110 1 1
011 1 0
00 0 0
) @

The two columns (D) and ) are identical, then the two statements are equivalent.

Let’s now verify if the given statments are tautologies

1. PVP _ _
P|P|PVP
110 1
0]1 1
The last column contains just ones, hence the statement is a tautology.
2. P\NP _ _
P|P|PAP
110 0
0]1 0
The last column contains just zeros, then the statement is not a tautology ; it’s rather a contra-
diction.



Solution Exercise 3.

PeQR=(P= Q) NQ= P)
=(P=0Q)V(Q=P)
= (PAQ)V(QAP)

This means that the negation of : P and () are equivalent, is : one of the statements is true
and the other is false.

Solution Exercise 4.

1. Is the statement : Vo € R, Iy € R, 22 +y < 0, true ?
It’s clear that for any x € R, x* > 0. Is there a y € R such that 2> +y < 0 ? Let’s consider y
as the unknown of the inequation and let’s try to solve it :

2y <0=y< —2a?

and that’s it, every y € R such that y < —a?, and not just an only one, will do the job i.e.
2% +y < 0. Hence this statement is true.

Now let’s swap the quantifiers :

e We obtain the following statement :

JyeR, Ve eR, 22 +y <0

For y > 0 the inequality x> +y < 0 is obviously false for any x € R.
So for the inequality to hold, it’s necessary that y < 0, but in this case :

PHy<0= —/—y<z<,y

hence for x €] — 0o, —/=y| U [\/y, +0oo[ the inequality doesn’t hold.
Conclusion : the statement is false.
e Another way to make the swap is the following statement :

JreR, Yy eR, 2> +y <0

This statement is obviously false, because for any x € R, if y = —a? then we obtain x* +1y = 0
i.e. the inequality is not verified. Hence this statement is also false.



2. Let’s write the negation of the statement : Vy € R, In e N, y <n :

VyeR,IneN,y<n<=dJyeR, VneN y>n

This statement is false, because for y € R_, then y < 0 which contradicts the statement and
if y € Ry, then if we take n = [y] + 1, we obtain y < n which is a contradiction too with the
statement. [y| is called the integer part, it is the greatest integer less than or equal to y. We
deduce that the original statement is true.

Solution Exercise 5.

1. 2° 4+ 2ax + 3 = 0 is a second degree equation of variable x. We will use a direct reasoning to
study this equation. The discriminant of the equation is then A = 4a® — 12, so :
A>0<={a<—V3orV3<a},A=0<=a=+V3and A <0<+= {—V/3 <a <3}
Hence :

(a) If a €] — 00, —V/3[U]\/3, +-00[ then the equation has two solutions :

2 VA  2a4 VA

xr = 9 ) 9

(b) If a = +/3, the equation has a unique solution :

—2
x:Ta:—ahence;p:\/gifa:— 3andm=—\/§zfa=\/§

(c) If a €] — \/3,V/3] then the equation has no solutions.
If we suppose a € N, then A # 0, hence there is just two cases :
(a) If a € {2,3,4, ...} then the equation has two solutions :

—2a — VA —2a+ VA

rN=—————— To = 9

2

(b) If a € {0,1} then the equation has no solutions.

2. We have to show by contraposition that : ¥p € N, p? is even == p is even.
We have the equivalence :

(p* is even = p is even) <= (p is odd = p* is odd)

Let’s show the second implication which is easier to do :
If p € N such that p is odd, that is I3k € N, p = 2k + 1, then p* = (2k +1)> = 2k’ + 1 with
k' = 2k% + 2k € N, which means that p* is odd, and here we’r finished.

3. Let’s try to prove by contradiction the same statement. (supplementary question)
Suppose that :Vp € N, p? is even = p is even, is true, that is 3p € N, p? is even and p is odd.

pis odd=— Jk € N,p =2k + 1
— P =2k +1
<= p? is odd, this is a contradiction with the hypothesis which says that p* is even.

4. Now we show by contradiction that v/2 ¢ Q.

Soppose that /2 € Q, hence there exists p € N and ¢ € N* such that /2 = d with b being
q q
reduced i.e. 1 is the only common divisor for p and q.

V2 = b implies that p* = 2q¢*, this means that p* is even and hence p is even too (take a look



at the question 2).

p s even is equivalent to say that there exists a k € N such that p = 2k.

We obtain, then, from p* = 2¢* that 4k*> = 2¢® and hence ¢*> = 2k* and like p, we obtain that
q is even too, which means that 2 is a common divisor of p and q and this is a contradiction

because the fraction P is reduced.
q

5. This statement ¥Yx €] — 00,3[, 2% < 9 is false, we can prove it by a counter example : Let
x = —4, then x €] — 00, 3[ but 2> =16 > 9.
The statement Vz,y € R, 22 + y? > xy is true, we will prove it by a direct reasoning.
Let x,y € R, then (x —y)?> > 0 hence x* + y* — 2xy > 0 which leads to x* + y* > 2xy, here we
have two cases :
case 1 : vy < 0 i.e. x and y are of opposite signs, then x> + y*> > xy is obvious since 2 + y* > 0
and zy < 0.
case 2 : xy > 0 i.e. x and y are both positive or both negative, then if we multiply the inequality
2 > 1 by xy, its direction doesn’t change and we obtain 2zy > xy. Hence x* + y* > zy.
(The null case i.e. t =0 ory =0 orxz =y =0 is included in this case 2).

6. We show by induction that for any integer n > 4, n! > 2",
1.Initialization : For n = 4 we have :

41 =24>2* =16

2.Heredity : Suppose that for a given n > 4 we have n! > 2". Using this hypothesis, let’s
show that (n + 1)! > 271,

(n+1)!'=(Mm+1)-nl
> (n+1)-2" because of the induction hypothesis

> 22" because Vn >4, n+1> 2
:27’L+1

3.Conclusion : VYn > 4, n! > 2",
n 1 n
7. Let’s prove by induction the statement : Vn € N*, Y "k = §n(n +1). with Y k=1+2+3+

k=1 k=1
44 ---+n. In order to lighten the writing let’s put :

A(n) = zi: k- and B(n)= ;n(n +1)

1. Initialization : For n = 1, we have A(1) = B(1), that is :

1

Zk—;-1-(1+1)

k=1

. 1 1
because : Y k=1 andﬁ-l-(l—i-l):i-l-@):l.
k=1
2.Heredity : Suppose that for a givenn € N* we have A(n) = B(n). Let’s prove that A(n+1) =



B(n+1) e :fk: = ;(n—i— 1)(n+2).

n+1

Aln+1)=>k
k=1
=14+2+3+44---+n+(n+1)
=> k+(n+1)
k=1

= A(n) + (n+1)
= B(n) + (n + 1) because of the induction hypothesis

:;n(n—kl)—k(n-l—l)

n(n+1)+2(n+1)
2
n?+3n+ 2
2

(n+1)(n+2)

2
= ;(n—i- 1)(n+2)
=B(n+1)

" 1
3.Conclusion : Vn € N*, Y k= §n(n +1)
k=1
. We will show by induction that : ¥Yn € N, 7" — 1 is divisible by 6.
1.Initialization : For n =0 we have 7° —1=1—1=0 and 0 is divisible by 6.
2.Heredity : Suppose that for a given n € N, 7" — 14is divisible by 6. Let’s show that 7" —1
est divisible by 6.

Tl =77 -1
=6+1)-7 -1
=6-T"+7"—1

6-7" is divisible by 6 and by induction hypothesis 7" — 1 is also divisible by 6 then 6-7"+7" —1
is divisible by 6, that is 7"t — 1 is divisible by 6.

3.Conclusion : Vn € N, 7" — 1 s divisible by 6.

. Now we show that : Vn € N, 4™ 4+ 6n — 1is a multiple of 9 (supp).

Put P(n): 4™+ 6n — 1is a multiple of 9.

1.Initialization : Forn =0 we have P(0):4°+6-0—1=0 and 0 is a multiple of 9. P(0)
is then verified.

2.Heredity : Suppose that P(n) is verified for a givenn € N, that is Ik, € N, 4"+6n—1 = 9k,,.
Let’s show that P(n+1) is also verified. P(n+1) is given by : 4" +6(n+1) — 1 is a multiple



of 9.

4" 1 6(n+1)—1=4-4"4+6n+6—1
=(1+3)-4"+6n—1+6
=4"4+6n—143-4"46
=9-k+3-4" + 6 because of the induction hypothesis
=9k, +3( )+6
the formula 1s derived from the induction hypothesis
= 9(k, + 3k, —2n + 1)
=9(4k, —2n+1)
= 9k with k, = 4k, —2n+1 € N

Hence P(n + 1) is verified.
3.Conclusion : Vn € N, 4" + 6n — 1is a multiple of 9



