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Solution Exercise 1.
1. P ∨ (Q ∧ R) and (P ∨ Q) ∧ (P ∨ R)

P Q R Q ∧ R P ∨ (Q ∧ R) P ∨ Q P ∨ R (P ∨ Q) ∧ (P ∨ R)
1 1 1 1 1 1 1 1
1 1 0 0 1 1 1 1
1 0 1 0 1 1 1 1
1 0 0 0 1 1 1 1
0 1 1 1 1 1 1 1
0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
0 0 0 0 0 0 0 0

1 2

The two columns 1 and 2 are identical, then the two statements are equivalent.
2. P =⇒ Q and P ∨ Q

P Q P =⇒ Q P P ∨ Q

1 1 1 0 1
1 0 0 0 0
0 1 1 1 1
0 0 1 1 1

1 2

The two columns 1 and 2 are identical, then the two statements are equivalent.
3. P =⇒ Q and Q =⇒ P

P Q P =⇒ Q Q =⇒ P

1 1 1 1
1 0 0 1
0 1 1 0
0 0 1 1

1 2

The two columns 1 and 2 are not identical, then there is no equivalence between the two
statements.

Solution Exercise 2. Let’s show the equivalences :
1. P =⇒ Q ≡ 1P ∧ Q

P Q Q P =⇒ Q P =⇒ Q P ∧ Q

1 1 0 1 0 0
1 0 1 0 1 1
0 1 0 1 0 0
0 0 1 1 0 0

1 2

The two columns 1 and 2 are identical, then the two statements are equivalent.

1. ≡ is another notation for the equivalence.
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2. P =⇒ Q ≡ Q =⇒ P

P Q P Q P =⇒ Q Q =⇒ P

1 1 0 0 1 1
1 0 0 1 0 0
0 1 1 0 1 1
0 0 1 1 1 1

1 2
The two columns 1 and 2 are identical, then the two statements are equivalent.

3. (P ⇔ Q) ≡ (P =⇒ Q) ∧ (Q =⇒ P )

P Q P ⇐⇒ Q P =⇒ Q Q =⇒ P (P =⇒ Q) ∧ (Q =⇒ P )
1 1 1 1 1 1
1 0 0 0 1 0
0 1 0 1 0 0
0 0 1 1 1 1

1 2

The two columns 1 and 2 are identical, then the two statements are equivalent.
4. P ⊕ Q ≡ (P ∧ Q) ∨ (P ∧ Q)

P Q P Q P ⊕ Q P ∧ Q P ∧ Q (P ∧ Q) ∨ (P ∧ Q)
1 1 0 0 0 0 0 0
1 0 0 1 1 1 0 1
0 1 1 0 1 0 1 1
0 0 1 1 0 0 0 0

1 2

The two columns 1 and 2 are identical, then the two statements are equivalent.
5. (P ⊕ Q) ⊕ Q ≡ P

P Q P ⊕ Q (P ⊕ Q) ⊕ Q

1 1 0 1
1 0 1 1
0 1 1 0
0 0 0 0
1 2

The two columns 1 and 2 are identical, then the two statements are equivalent.
Let’s now verify if the given statments are tautologies

1. P ∨ P
P P P ∨ P

1 0 1
0 1 1

The last column contains just ones, hence the statement is a tautology.
2. P ∧ P

P P P ∧ P

1 0 0
0 1 0

The last column contains just zeros, then the statement is not a tautology ; it’s rather a contra-
diction.
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Solution Exercise 3.
1.

P ∧ Q ≡ P ∨ Q

2.

[(P ∧ Q) ∨ R] =⇒ (P ∧ R) ≡ [(P ∧ Q) ∨ R] ∧ (P ∧ R)
≡ [(P ∧ Q) ∨ R] ∧ (P ∨ R)

3.

P ⇔ Q ≡ (P =⇒ Q) ∧ (Q =⇒ P )
≡ (P =⇒ Q) ∨ (Q =⇒ P )
≡ (P ∧ Q) ∨ (Q ∧ P )

This means that the negation of : P and Q are equivalent, is : one of the statements is true
and the other is false.

4.

P ⊕ Q ≡ (P ∧ Q) ∨ (Q ∧ P )
≡ (P ∨ Q) ∧ (Q ∨ P )
≡ (P =⇒ Q) ∧ (Q =⇒ P )
≡ P ⇐⇒ Q

Solution Exercise 4.
1. Is the statement : ∀x ∈ R, ∃y ∈ R, x2 + y < 0, true ?

It’s clear that for any x ∈ R, x2 ≥ 0. Is there a y ∈ R such that x2 + y < 0 ? Let’s consider y
as the unknown of the inequation and let’s try to solve it :

x2 + y < 0 =⇒ y < −x2

and that’s it, every y ∈ R such that y < −x2, and not just an only one, will do the job i.e.
x2 + y < 0. Hence this statement is true.
Now let’s swap the quantifiers :
• We obtain the following statement :

∃y ∈ R, ∀x ∈ R, x2 + y < 0

For y ≥ 0 the inequality x2 + y < 0 is obviously false for any x ∈ R.
So for the inequality to hold, it’s necessary that y < 0, but in this case :

x2 + y < 0 =⇒ −
√

−y < x <
√

y

hence for x ∈] − ∞, −
√

−y] ∪ [√y, +∞[ the inequality doesn’t hold.
Conclusion : the statement is false.
• Another way to make the swap is the following statement :

∃x ∈ R, ∀y ∈ R, x2 + y < 0

This statement is obviously false, because for any x ∈ R, if y = −x2 then we obtain x2 + y = 0
i.e. the inequality is not verified. Hence this statement is also false.
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2. Let’s write the negation of the statement : ∀y ∈ R, ∃n ∈ N, y ≤ n :

∀y ∈ R, ∃n ∈ N, y ≤ n ⇐⇒ ∃y ∈ R, ∀n ∈ N, y > n

This statement is false, because for y ∈ R−, then y ≤ 0 which contradicts the statement and
if y ∈ R+, then if we take n = [y] + 1, we obtain y < n which is a contradiction too with the
statement. [y] is called the integer part, it is the greatest integer less than or equal to y. We
deduce that the original statement is true.

Solution Exercise 5.
1. x2 + 2ax + 3 = 0 is a second degree equation of variable x. We will use a direct reasoning to

study this equation. The discriminant of the equation is then ∆ = 4a2 − 12, so :
∆ > 0 ⇐⇒ {a < −

√
3 or

√
3 < a}, ∆ = 0 ⇐⇒ a = ±

√
3 and ∆ < 0 ⇐⇒ {−

√
3 < a <

√
3}.

Hence :
(a) If a ∈] − ∞, −

√
3[∪]

√
3, +∞[ then the equation has two solutions :

x1 = −2a −
√

∆
2 x2 = −2a +

√
∆

2

(b) If a = ±
√

3, the equation has a unique solution :

x = −2a

2 = −a hence x =
√

3 if a = −
√

3 and x = −
√

3 if a =
√

3

(c) If a ∈] −
√

3,
√

3[ then the equation has no solutions.
If we suppose a ∈ N, then ∆ ̸= 0, hence there is just two cases :
(a) If a ∈ {2, 3, 4, . . . } then the equation has two solutions :

x1 = −2a −
√

∆
2 x2 = −2a +

√
∆

2

(b) If a ∈ {0, 1} then the equation has no solutions.
2. We have to show by contraposition that : ∀p ∈ N, p2 is even =⇒ p is even.

We have the equivalence :

(p2 is even =⇒ p is even) ⇐⇒ (p is odd =⇒ p2 is odd)

Let’s show the second implication which is easier to do :
If p ∈ N such that p is odd, that is ∃k ∈ N, p = 2k + 1, then p2 = (2k + 1)2 = 2k

′ + 1 with
k

′ = 2k2 + 2k ∈ N, which means that p2 is odd, and here we’r finished.

3. Let’s try to prove by contradiction the same statement. (supplementary question)
Suppose that : ∀p ∈ N, p2 is even =⇒ p is even, is true, that is ∃p ∈ N, p2 is even and p is odd.

p is odd =⇒ ∃k ∈ N, p = 2k + 1
=⇒ p2 = 2k

′ + 1
⇐⇒ p2 is odd, this is a contradiction with the hypothesis which says that p2 is even.

4. Now we show by contradiction that
√

2 /∈ Q.
Soppose that

√
2 ∈ Q, hence there exists p ∈ N and q ∈ N∗ such that

√
2 = p

q
with p

q
being

reduced i.e. 1 is the only common divisor for p and q.√
2 = p

q
implies that p2 = 2q2, this means that p2 is even and hence p is even too (take a look
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at the question 2).
p is even is equivalent to say that there exists a k ∈ N such that p = 2k.
We obtain, then, from p2 = 2q2 that 4k2 = 2q2 and hence q2 = 2k2 and like p, we obtain that
q is even too, which means that 2 is a common divisor of p and q and this is a contradiction
because the fraction p

q
is reduced.

5. This statement ∀x ∈] − ∞, 3[, x2 < 9 is false, we can prove it by a counter example : Let
x = −4, then x ∈] − ∞, 3[ but x2 = 16 > 9.
The statement ∀x, y ∈ R, x2 + y2 ≥ xy is true, we will prove it by a direct reasoning.
Let x, y ∈ R, then (x − y)2 ≥ 0 hence x2 + y2 − 2xy ≥ 0 which leads to x2 + y2 ≥ 2xy, here we
have two cases :

case 1 : xy < 0 i.e. x and y are of opposite signs, then x2 + y2 ≥ xy is obvious since x2 + y2 > 0
and xy < 0.

case 2 : xy ≥ 0 i.e. x and y are both positive or both negative, then if we multiply the inequality
2 > 1 by xy, its direction doesn’t change and we obtain 2xy > xy. Hence x2 + y2 ≥ xy.
(The null case i.e. x = 0 or y = 0 or x = y = 0 is included in this case 2).

6. We show by induction that for any integer n ≥ 4, n! ≥ 2n.
1.Initialization : For n = 4 we have :

4! = 24 ≥ 24 = 16

2.Heredity : Suppose that for a given n ≥ 4 we have n! ≥ 2n. Using this hypothesis, let’s
show that (n + 1)! ≥ 2n+1.

(n + 1)! = (n + 1) · n!
≥ (n + 1) · 2n because of the induction hypothesis
≥ 2 · 2n because ∀n ≥ 4, n + 1 > 2
= 2n+1

3.Conclusion : ∀n ≥ 4, n! ≥ 2n.

7. Let’s prove by induction the statement : ∀n ∈ N∗,
n∑

k=1
k = 1

2n(n + 1). with
n∑

k=1
k = 1 + 2 + 3 +

4 + · · · + n. In order to lighten the writing let’s put :

A(n) =
n∑

k=1
k and B(n) = 1

2n(n + 1)

1.Initialization : For n = 1, we have A(1) = B(1), that is :

1∑
k=1

k = 1
2 · 1 · (1 + 1)

because :
1∑

k=1
k = 1 and 1

2 · 1 · (1 + 1) = 1
2 · 1 · (2) = 1.

2.Heredity : Suppose that for a given n ∈ N∗ we have A(n) = B(n). Let’s prove that A(n+1) =
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B(n + 1) i.e.
n+1∑
k=1

k = 1
2(n + 1)(n + 2).

A(n + 1) =
n+1∑
k=1

k

= 1 + 2 + 3 + 4 + · · · + n + (n + 1)

=
n∑

k=1
k + (n + 1)

= A(n) + (n + 1)
= B(n) + (n + 1) because of the induction hypothesis

= 1
2n(n + 1) + (n + 1)

= n(n + 1) + 2(n + 1)
2

= n2 + 3n + 2
2

= (n + 1)(n + 2)
2

= 1
2(n + 1)(n + 2)

= B(n + 1)

3.Conclusion : ∀n ∈ N∗,
n∑

k=1
k = 1

2n(n + 1)

8. We will show by induction that : ∀n ∈ N, 7n − 1 is divisible by 6.
1.Initialization : For n = 0 we have 70 − 1 = 1 − 1 = 0 and 0 is divisible by 6.
2.Heredity : Suppose that for a given n ∈ N, 7n − 1 is divisible by 6. Let’s show that 7n+1 − 1
est divisible by 6.

7n+1 − 1 = 7 · 7n − 1
= (6 + 1) · 7n − 1
= 6 · 7n + 7n − 1

6 ·7n is divisible by 6 and by induction hypothesis 7n −1 is also divisible by 6 then 6 ·7n +7n −1
is divisible by 6, that is 7n+1 − 1 is divisible by 6.
3.Conclusion : ∀n ∈ N, 7n − 1 is divisible by 6.

9. Now we show that : ∀n ∈ N, 4n + 6n − 1 is a multiple of 9 (supp).
Put P (n) : 4n + 6n − 1 is a multiple of 9.
1.Initialization : For n = 0 we have P (0) : 40 + 6 · 0 − 1 = 0 and 0 is a multiple of 9. P (0)
is then verified.
2.Heredity : Suppose that P (n) is verified for a given n ∈ N, that is ∃kn ∈ N, 4n+6n−1 = 9kn.
Let’s show that P (n + 1) is also verified. P (n + 1) is given by : 4n+1 + 6(n + 1) − 1 is a multiple
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of 9.

4n+1 + 6(n + 1) − 1 = 4 · 4n + 6n + 6 − 1
= (1 + 3) · 4n + 6n − 1 + 6
= 4n + 6n − 1 + 3 · 4n + 6
= 9 · k + 3 · 4n + 6 because of the induction hypothesis
= 9 · kn + 3(9kn − 6n + 1) + 6

the formula 9kn − 6n + 1 is derived from the induction hypothesis
= 9(kn + 3kn − 2n + 1)
= 9(4kn − 2n + 1)
= 9k

′

n with k
′

n = 4kn − 2n + 1 ∈ N

Hence P (n + 1) is verified.
3.Conclusion : ∀n ∈ N, 4n + 6n − 1 is a multiple of 9

7


