Solution Exercise 1.

1. $P \lor (Q \land R)$

and
$$(P \lor Q) \land (P \lor R)$$

P	Q	R	$Q \wedge R$	$P \lor (Q \land R)$	$P \lor Q$	$P \lor R$	$(P \lor Q) \land (P \lor R)$
1	1	1	1	1	1	1	1
1	1	0	0	1	1	1	1
1	0	1	0	1	1	1	1
1	0	0	0	1	1	1	1
0	1	1	1	1	1	1	1
0	1	0	0	0	1	0	0
0	0	1	0	0	0	1	0
0	0	0	0	0	0	0	0
				1			2

The two columns (1) and (2) are identical, then the two statements are equivalent. 2. $P \implies Q$ and $\overline{P} \lor Q$

P	Q	$P \Longrightarrow Q$	\overline{P}	$\overline{P} \vee Q$
1	1	1	0	1
1	0	0	0	0
0	1	1	1	1
0	0	1	1	1
		1		2

The two columns (1) and (2) are identical, then the two statements are equivalent. 3. $P \implies Q$ and $Q \implies P$

P	Q	$P \Longrightarrow Q$	$Q \Longrightarrow P$
1	1	1	1
1	0	0	1
0	1	1	0
0	0	1	1
		(1)	(2)

The two columns (1) and (2) are not identical, then there is no equivalence between the two statements.

Solution Exercise 2. Let's show the equivalences :

1.
$$\overline{P \implies Q} \equiv {}^{1}P \wedge \overline{Q}$$

P	Q	\overline{Q}	$P \Longrightarrow Q$	$\overline{P \Longrightarrow Q}$	$P \wedge \overline{Q}$
1	1	0	1	0	0
1	0	1	0	1	1
0	1	0	1	0	0
0	0	1	1	0	0
				1	2

The two columns (1) and (2) are identical, then the two statements are equivalent.

^{1.} \equiv is another notation for the equivalence.

2. $P \implies Q \equiv \overline{Q} \implies \overline{P}$

P	Q	\overline{P}	\overline{Q}	$P \Longrightarrow Q$	$\overline{Q} \Longrightarrow \overline{P}$
1	1	0	0	1	1
1	0	0	1	0	0
0	1	1	0	1	1
0	0	1	1	1	1
				1	2

The two columns (1) and (2) are identical, then the two statements are equivalent. 3. $(P \Leftrightarrow Q) \equiv (P \implies Q) \land (Q \implies P)$

P	Q	$P \Longleftrightarrow Q$	$P \Longrightarrow Q$	$Q \Longrightarrow P$	$(P \Longrightarrow Q) \land (Q \Longrightarrow P)$
1	1	1	1	1	1
1	0	0	0	1	0
0	1	0	1	0	0
0	0	1	1	1	1
		1		·	2

The two columns (1) and (2) are identical, then the two statements are equivalent. 4. $P \oplus Q \equiv (P \land \overline{Q}) \lor (\overline{P} \land Q)$

P	Q	\overline{P}	\overline{Q}	$P\oplus Q$	$P \wedge \overline{Q}$	$\overline{P} \wedge Q$	$(P \land \overline{Q}) \lor (\overline{P} \land Q)$
1	1	0	0	0	0	0	0
1	0	0	1	1	1	0	1
0	1	1	0	1	0	1	1
0	0	1	1	0	0	0	0
	1						2

The two columns (1) and (2) are identical, then the two statements are equivalent. 5. $(P \oplus Q) \oplus Q \equiv P$

P	Q	$P\oplus Q$	$(P\oplus Q)\oplus Q$
1	1	0	1
1	0	1	1
0	1	1	0
0	0	0	0
			2

The two columns (1) and (2) are identical, then the two statements are equivalent. Let's now verify if the given statements are tautologies

1. $P \lor \overline{P}$

P	\overline{P}	$P \vee \overline{P}$
1	0	1
0	1	1

The last column contains just ones, hence the statement is a tautology. 2. $P \wedge \overline{P}$

P	\overline{P}	$P \wedge \overline{P}$
1	0	0
0	1	0

The last column contains just zeros, then the statement is not a tautology; it's rather a contradiction. Solution Exercise 3.

1.

$$\overline{P \wedge Q} \equiv \overline{P} \vee \overline{Q}$$

2.

$$\overline{[(P \land Q) \lor R]} \implies (P \land R) \equiv [(P \land Q) \lor R] \land (\overline{P \land R})$$
$$\equiv [(P \land Q) \lor R] \land (\overline{P} \lor \overline{R})$$

3.

$$\overline{P \Leftrightarrow Q} \equiv \overline{(P \Longrightarrow Q) \land (Q \Longrightarrow P)}$$
$$\equiv \overline{(P \Longrightarrow Q)} \lor \overline{(Q \Longrightarrow P)}$$
$$\equiv (P \land \overline{Q}) \lor (Q \land \overline{P})$$

This means that the negation of : P and Q are equivalent, is : one of the statements is true and the other is false.

4.

$$\overline{P \oplus Q} \equiv \overline{(P \land \overline{Q}) \lor (Q \land \overline{P})}$$
$$\equiv (\overline{P} \lor Q) \land (\overline{Q} \lor P)$$
$$\equiv (P \Longrightarrow Q) \land (Q \Longrightarrow P)$$
$$\equiv P \Longleftrightarrow Q$$

Solution Exercise 4.

1. Is the statement : $\forall x \in \mathbb{R}, \exists y \in \mathbb{R}, x^2 + y < 0$, true ? It's clear that for any $x \in \mathbb{R}, x^2 \ge 0$. Is there a $y \in \mathbb{R}$ such that $x^2 + y < 0$? Let's consider y as the unknown of the inequation and let's try to solve it :

$$x^2 + y < 0 \Longrightarrow y < -x^2$$

and that's it, every $y \in \mathbb{R}$ such that $y < -x^2$, and not just an only one, will do the job i.e. $x^2 + y < 0$. Hence this statement is true.

Now let's swap the quantifiers :

 \bullet We obtain the following statement :

$$\exists y \in \mathbb{R}, \ \forall x \in \mathbb{R}, \ x^2 + y < 0$$

For $y \ge 0$ the inequality $x^2 + y < 0$ is obviously false for any $x \in \mathbb{R}$. So for the inequality to hold, it's necessary that y < 0, but in this case :

$$x^2 + y < 0 \Longrightarrow -\sqrt{-y} < x < \sqrt{y}$$

hence for $x \in]-\infty, -\sqrt{-y}] \cup [\sqrt{y}, +\infty[$ the inequality doesn't hold. Conclusion : the statement is false.

• Another way to make the swap is the following statement :

$$\exists x \in \mathbb{R}, \forall y \in \mathbb{R}, x^2 + y < 0$$

This statement is obviously false, because for any $x \in \mathbb{R}$, if $y = -x^2$ then we obtain $x^2 + y = 0$ i.e. the inequality is not verified. Hence this statement is also false.

2. Let's write the negation of the statement : $\forall y \in \mathbb{R}, \exists n \in \mathbb{N}, y \leq n$:

$$\overline{\forall y \in \mathbb{R}, \, \exists n \in \mathbb{N}, \, y \leq n} \Longleftrightarrow \exists y \in \mathbb{R}, \, \forall n \in \mathbb{N}, \, y > n$$

This statement is false, because for $y \in \mathbb{R}_-$, then $y \leq 0$ which contradicts the statement and if $y \in \mathbb{R}_+$, then if we take n = [y] + 1, we obtain y < n which is a contradiction too with the statement. [y] is called the integer part, it is the greatest integer less than or equal to y. We deduce that the original statement is true.

Solution Exercise 5.

1. $x^2 + 2ax + 3 = 0$ is a second degree equation of variable x. We will use a direct reasoning to study this equation. The discriminant of the equation is then $\Delta = 4a^2 - 12$, so : $\Delta > 0 \iff \{a < -\sqrt{3} \text{ or } \sqrt{3} < a\}, \Delta = 0 \iff a = \pm\sqrt{3} \text{ and } \Delta < 0 \iff \{-\sqrt{3} < a < \sqrt{3}\}.$ Hence :

(a) If $a \in]-\infty, -\sqrt{3}[\cup]\sqrt{3}, +\infty[$ then the equation has two solutions :

$$x_1 = \frac{-2a - \sqrt{\Delta}}{2} \qquad x_2 = \frac{-2a + \sqrt{\Delta}}{2}$$

(b) If $a = \pm \sqrt{3}$, the equation has a unique solution :

$$x = \frac{-2a}{2} = -a$$
 hence $x = \sqrt{3}$ if $a = -\sqrt{3}$ and $x = -\sqrt{3}$ if $a = \sqrt{3}$

- (c) If $a \in]-\sqrt{3}, \sqrt{3}[$ then the equation has no solutions.
- If we suppose $a \in \mathbb{N}$, then $\Delta \neq 0$, hence there is just two cases :
- (a) If $a \in \{2, 3, 4, ...\}$ then the equation has two solutions :

$$x_1 = \frac{-2a - \sqrt{\Delta}}{2} \qquad x_2 = \frac{-2a + \sqrt{\Delta}}{2}$$

(b) If $a \in \{0, 1\}$ then the equation has no solutions.

2. We have to show by contraposition that : $\forall p \in \mathbb{N}, p^2 \text{ is even} \implies p \text{ is even}.$ We have the equivalence :

 $(p^2 \text{ is even} \implies p \text{ is even}) \iff (p \text{ is odd} \implies p^2 \text{ is odd})$

Let's show the second implication which is easier to do : If $p \in \mathbb{N}$ such that p is odd, that is $\exists k \in \mathbb{N}$, p = 2k + 1, then $p^2 = (2k + 1)^2 = 2k' + 1$ with $k' = 2k^2 + 2k \in \mathbb{N}$, which means that p^2 is odd, and here we'r finished.

3. Let's try to prove by contradiction the same statement. (supplementary question) Suppose that : $\forall p \in \mathbb{N}, p^2 \text{ is even} \implies p \text{ is even}$, is true, that is $\exists p \in \mathbb{N}, p^2 \text{ is even } and p \text{ is odd}$.

$$\begin{array}{l} p \ is \ odd \Longrightarrow \exists k \in \mathbb{N}, p = 2k + 1 \\ \Longrightarrow p^2 = 2k^{'} + 1 \\ \iff p^2 \ is \ odd, \ this \ is \ a \ contradiction \ with \ the \ hypothesis \ which \ says \ that \ p^2 \ is \ even. \end{array}$$

4. Now we show by contradiction that $\sqrt{2} \notin \mathbb{Q}$. Soppose that $\sqrt{2} \in \mathbb{Q}$, hence there exists $p \in \mathbb{N}$ and $q \in \mathbb{N}^*$ such that $\sqrt{2} = \frac{p}{q}$ with $\frac{p}{q}$ being reduced i.e. 1 is the only common divisor for p and q. $\sqrt{2} = \frac{p}{q}$ implies that $p^2 = 2q^2$, this means that p^2 is even and hence p is even too (take a look at the question 2).

p is even is equivalent to say that there exists a $k \in \mathbb{N}$ such that p = 2k. We obtain, then, from $p^2 = 2q^2$ that $4k^2 = 2q^2$ and hence $q^2 = 2k^2$ and like p, we obtain that q is even too, which means that 2 is a common divisor of p and q and this is a contradiction because the fraction $\frac{p}{q}$ is reduced.

- 5. This statement $\forall x \in] -\infty, 3[, x^2 < 9 \text{ is false, we can prove it by a counter example : Let } x = -4, then x \in] -\infty, 3[but x^2 = 16 > 9.$ The statement $\forall x, y \in \mathbb{R}, x^2 + y^2 \ge xy \text{ is true, we will prove it by a direct reasoning.}$ Let $x, y \in \mathbb{R}$, then $(x - y)^2 \ge 0$ hence $x^2 + y^2 - 2xy \ge 0$ which leads to $x^2 + y^2 \ge 2xy$, here we have two cases :
- case 1 : xy < 0 i.e. x and y are of opposite signs, then $x^2 + y^2 \ge xy$ is obvious since $x^2 + y^2 > 0$ and xy < 0.
- case 2 : $xy \ge 0$ i.e. x and y are both positive or both negative, then if we multiply the inequality 2 > 1 by xy, its direction doesn't change and we obtain 2xy > xy. Hence $x^2 + y^2 \ge xy$. (The null case i.e. x = 0 or y = 0 or x = y = 0 is included in this case 2).
- 6. We show by induction that for any integer $n \ge 4$, $n! \ge 2^n$. 1. Initialization : For n = 4 we have :

$$4! = 24 \ge 2^4 = 16$$

2. *Heredity* : Suppose that for a given $n \ge 4$ we have $n! \ge 2^n$. Using this hypothesis, let's show that $(n+1)! \ge 2^{n+1}$.

$$\begin{aligned} (n+1)! &= (n+1) \cdot n! \\ &\geq (n+1) \cdot 2^n \text{ because of the induction hypothesis} \\ &\geq 2 \cdot 2^n \text{ because } \forall n \geq 4, \ n+1 > 2 \\ &= 2^{n+1} \end{aligned}$$

- 3. Conclusion : $\forall n \ge 4, n! \ge 2^n$.
- 7. Let's prove by induction the statement : $\forall n \in \mathbb{N}^*$, $\sum_{k=1}^n k = \frac{1}{2}n(n+1)$. with $\sum_{k=1}^n k = 1+2+3+4+\cdots+n$. In order to lighten the writing let's put :

$$A(n) = \sum_{k=1}^{n} k$$
 and $B(n) = \frac{1}{2}n(n+1)$

1. *Initialization* : For n = 1, we have A(1) = B(1), that is :

$$\sum_{k=1}^{1} k = \frac{1}{2} \cdot 1 \cdot (1+1)$$

because : $\sum_{k=1}^{1} k = 1$ and $\frac{1}{2} \cdot 1 \cdot (1+1) = \frac{1}{2} \cdot 1 \cdot (2) = 1$. 2. **Heredity**: Suppose that for a given $n \in \mathbb{N}^*$ we have A(n) = B(n). Let's prove that A(n+1) = 1.

$$B(n+1) \ i.e. \ \sum_{k=1}^{n+1} k = \frac{1}{2}(n+1)(n+2).$$

$$A(n+1) = \sum_{k=1}^{n+1} k$$

$$= 1+2+3+4+\dots+n+(n+1)$$

$$= \sum_{k=1}^{n} k + (n+1)$$

$$= A(n) + (n+1)$$

$$= B(n) + (n+1) \ because \ of \ the \ induction \ hypothesis$$

$$= \frac{1}{2}n(n+1) + (n+1)$$

$$= \frac{n(n+1)+2(n+1)}{2}$$

$$= \frac{n^2+3n+2}{2}$$

$$= \frac{(n+1)(n+2)}{2}$$

$$= B(n+1)$$

3. Conclusion : $\forall n \in \mathbb{N}^*, \sum_{k=1}^n k = \frac{1}{2}n(n+1)$

8. We will show by induction that : ∀n ∈ N, 7ⁿ - 1 is divisible by 6.
1. Initialization : For n = 0 we have 7⁰ - 1 = 1 - 1 = 0 and 0 is divisible by 6.
2. Heredity : Suppose that for a given n ∈ N, 7ⁿ - 1 is divisible by 6. Let's show that 7ⁿ⁺¹ - 1 est divisible by 6.

$$7^{n+1} - 1 = 7 \cdot 7^n - 1$$

= (6+1) \cdot 7^n - 1
= 6 \cdot 7^n + 7^n - 1

 $6 \cdot 7^n$ is divisible by 6 and by induction hypothesis $7^n - 1$ is also divisible by 6 then $6 \cdot 7^n + 7^n - 1$ is divisible by 6, that is $7^{n+1} - 1$ is divisible by 6. 3. **Conclusion :** $\forall n \in \mathbb{N}, 7^n - 1$ is divisible by 6.

9. Now we show that : ∀n ∈ N, 4ⁿ + 6n - 1 is a multiple of 9 (supp). Put P(n) : 4ⁿ + 6n - 1 is a multiple of 9.
1. Initialization : For n = 0 we have P(0) : 4⁰ + 6 · 0 - 1 = 0 and 0 is a multiple of 9. P(0) is then verified.
2. Heredity : Suppose that P(n) is verified for a given n ∈ N, that is ∃k_n ∈ N, 4ⁿ+6n-1 = 9k_n. Let's show that P(n+1) is also verified. P(n+1) is given by : 4ⁿ⁺¹ + 6(n+1) - 1 is a multiple of 9.

$$\begin{split} 4^{n+1} + 6(n+1) - 1 &= 4 \cdot 4^n + 6n + 6 - 1 \\ &= (1+3) \cdot 4^n + 6n - 1 + 6 \\ &= 4^n + 6n - 1 + 3 \cdot 4^n + 6 \\ &= 9 \cdot k + 3 \cdot 4^n + 6 \text{ because of the induction hypothesis} \\ &= 9 \cdot k_n + 3(9k_n - 6n + 1) + 6 \\ &\quad the \text{ formula } 9k_n - 6n + 1 \text{ is derived from the induction hypothesis} \\ &= 9(k_n + 3k_n - 2n + 1) \\ &= 9(4k_n - 2n + 1) \\ &= 9k'_n \text{ with } k'_n = 4k_n - 2n + 1 \in \mathbb{N} \end{split}$$

Hence P(n+1) is verified. 3. **Conclusion** : $\forall n \in \mathbb{N}, 4^n + 6n - 1$ is a multiple of 9