L1 Ing Info

Tutorial sheet 3 : Binary relations

Exercise 1 :

Let \mathcal{R} be the relation defined on \mathbb{R}^* by :

$$x\mathcal{R}y \Leftrightarrow x^2 - \frac{1}{x^2} = y^2 - \frac{1}{y^2}.$$

- 1. Prove that \mathcal{R} is an equivalence relation.
- 2. Determine the equivalence class of $a \in \mathbb{R}^*$.

Exercise 2 :

Let \mathcal{R} be the relation defined on \mathbb{Z} by :

$$a\mathcal{R}b \Leftrightarrow 3$$
 divise $a-b$.

- 1. Prove that \mathcal{R} is an equivalence relation.
- 2. Determine the equivalence class of $a \in \mathbb{Z}$. Calculate 0, 1, 2 and 3.
- 3. Deduce the quotient set \mathbb{Z}/\mathcal{R} denoted by $\mathbb{Z}/3\mathbb{Z}$.

Exercise 3 :

Let the following relation defined on \mathbb{R}^2 by :

$$(x, y)\mathcal{R}(x', y') \Leftrightarrow (x \leq x' \text{ and } y \leq y').$$

- 1. Prove that \mathcal{R} is an order relation. This is total order?
- 2. Specify two upper bounds, two lower bounds, the supremum, and the infimum of the set $A = \{(1, 2), (3, 1)\}.$
- 3. Does the set A have a greatest and smaller element?

Exercise 4 :

Let Φ be a relation defined on \mathbb{N}^* by :

$$x\Phi y \Leftrightarrow \exists n \in \mathbb{N}^* \text{ such that } x^n = y.$$

- 1. Prove that Φ is an order relation on \mathbb{N}^* .
- 2. This is total order?
- 3. Let $A = \{1, 4, 8\}$. Determine whether MaxA and MinA exist for the order Φ .

https://dmath.univ-tlemcen.dz/fr/pages/190/l1-info-1er-ing-24-25

Algebra 1