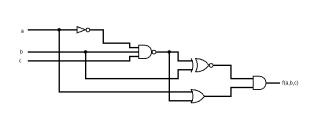
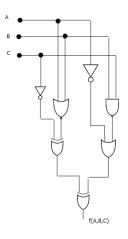
Exercise 1.

Using the truth table, prove the following equalities.

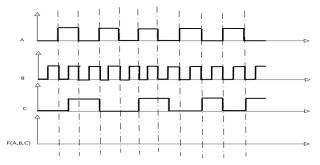

 $a + \overline{a} \cdot b = a + b, \ a \oplus b = \overline{a} \cdot b + a \cdot \overline{b}, \ \overline{a \oplus b} = a \cdot b + \overline{a} \cdot \overline{b}.$


Exercise 2.

- 1. How would you hardwave-implement a four-input OR gate using only two-input OR gates ?
- 2. How would you hardwave-implement a four-input AND gate using only two-input AND gates ?
- 3. How dou you implement three-input EX-OR logic functions with the help of two-input EX-OR gates?
- 4. How can you implement a NOT circuit using a two-input EX-OR gates?
- 5. How do you implement a three-input EX-NOR function using only twoinput EX-NOR gates ?

Exercise 3.

1. Give the output-logical function expressions of the figures bellow


2. Give the truth table of each boolean function.

Exercise 4.

Let us define a circuit by the following logical function

$$F(A, B, C) = \overline{A \oplus B} + C.$$

- 1. Give the graphic representation of the circuit.
- 2. Describe the output waveform for the input signals given in the figure bellow.

3. Give the corresponding truth table

Exercise 5. 1. Find the dual of $a \cdot b \cdot c \cdot \overline{d} + a \cdot \overline{b} \cdot \overline{c} \cdot d + \overline{a} \cdot \overline{b} \cdot \overline{c} \cdot \overline{d}$.

2. Find the complement of $a + [(b + \overline{c}) \cdot d + \overline{e}] \cdot f$.

Exercise 6. Simplify the following Boolean expressions.

- 1. $S = \overline{a} \cdot b \cdot (a + \overline{b} + c).$
- 2. $S = \overline{a} \cdot \overline{b} \cdot \overline{c} \cdot \overline{d} + a \cdot \overline{b} \cdot \overline{c} \cdot \overline{d} + a \cdot b \cdot \overline{c} \cdot \overline{d} + a \cdot b \cdot \overline{c} \cdot \overline{d}$.
- 3. $S = a + b \cdot \overline{c} + \overline{a} \cdot (\overline{b \cdot \overline{c}}) \cdot (a \cdot d + b).$
- 4. $S = (a \oplus b) \cdot b + a \cdot b$.

Exercise 7.

Let us define a circuit by the truth table bellow.

- 1. Give the logical expression of the output Y.
 - In the form of sum of products.
 - In the form of product of sums
- 2. Simplify the two expressions using the theorems of Boolean algebra.

A	B	C	Y
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	0

Exercise 8.

Let us consider the following logic functions

- $f(a, b, c, d) = a.b + \overline{a}.\overline{c}.\overline{d} \text{ and } g(a, b, c, d) = (\overline{a} + \overline{b} + \overline{c}).(a + d).$
- Give a logic circuit based on 2-input NAND gates and a logic circuit based on 2-input NOR gates for each of these functions.

Exercise 9.

We define a logical function f by the following truth table.

- 1. Write the disjunctif canonical form of the output.
- 2. Using theorems and laws of Boolean algebra to simplify the logical expression.
- 3. Give a logic circuit, using only 2-input NAND gates to implement the function f.

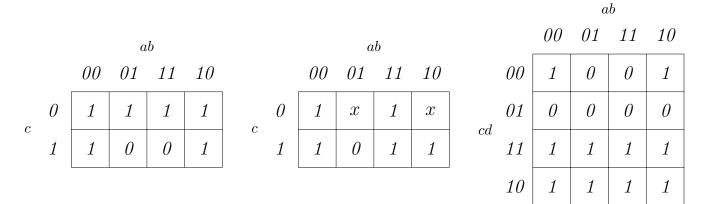
a	b	c	f(a,b,c)								
0	0	0	1								
0	0	1	0								
0	1	0	1								
0	1	1	0								
1	0	0	1								
1	0	1	1								
1	1	0	0								
1	1	1	0								

Exercise 10. Let f be a boolean function defined by the truth table bellow.

- 1. Represent f by his disjunctive canonical form. (First canonical form)
- 2. Use the Karnaugh maping method to obtain the simplified expression of f.
- 3. Implement the logical function f, using only 2-input NAND gates.

	Machine Framework1		
Tlemcen University	S1-L1-M	Departement of	Mathematics
Faculty of Sciences	Boolean Algebra-Karnaugh n	nap U	.Y 2024-2025

x	y	z	f(x, y, z)
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1


Exercise 11.

Le us give the boolean function defined by

$$f(a, b, c) = \prod (1, 4, 6)$$

- 1. Write function's expression as product of sums and sum of products.
- 2. Let us define the Boolean function g by $g(a, b, c) = a.b + \overline{c}$. — Write minterm and maxterm expressions of f.
- 3. Simplify the Boolean functions f and g using the Karnaugh mapping method
- 4. Using the Karnaugh mapping method, simplify the Boolean function h, defined by $h(a, b, c, d) = \sum (0, 3, 4, 6, 7, 8, 9, 10, 12, 14, 15) + \sum_{\varphi} (1, 2, 5, 11, 13, 15).$

Exercise 12.

Machine Framework1																	
Tlemcen University				S1-L1-M Depa					eparte	partement of Mathematics							
Faculty of Sciences				Boolean Algebra-Karnaugh map)	U.Y 2024-2025						
ab						ab							ab				
		00	<i>01</i>	11	10			00	01	11	10			00	01	11	10
cd	00	0	1	1	0	cd	00	1	1	0	1		00	x	0	0	1
	01	0	0	0	0		01	0	0	x	0	1	01	1	0	0	1
	11	1	0	0	1		11	1	x	0	1	cd	11	x	0	0	0
	10	1	1	1	1		10	1	1	x	1		10	1	1	x	1