Exercise 1.

- 1. Count from 0 to 25 in binary code.
- 2. Count from 0 to 17 in Gray code.

Exercise 2.

1. Convert to Straight Binary, the following numbers written in Gray code.

 110011_{Gray} ; 101111011_{Gray} ; ; 11111111_{Gray} .

2. Convert to Gray code, the following numbers written in Straight Binary code.

 $100011_2; 1111011_2; 11000111_2.$

Exercise 3.

How many bits would be required to encode decimal numbers from 0 to 99999 in straight binary and BCD codes?

Exercise 4.

1. Write the BCD equivalent codes of.

49; 678; 9822; 26.97; 125.36.

2. Convert to decimal the following numbers written in BCD code.

 $10010110;\ 100000100111;\ 110010.001;\ 1001.0110001.$

Exercise 5.

1. Write the Excess-3 equivalent codes of

59; 764; 75.48; 645.275.

2. Convert to decimal the following numbers written in Excess-3 code. 1001_{XS-3} ; 1010100001100111_{XS-3} ; 1100.01; 1011.11001000.

Exercise 6.

1. Using ASCII encoding table to encode your name in hexadecimal.

2. Using ASCII encoding table to decrypt the following ASCII data.

57	68	61	74	20	69	73	20	6D	61	74	68	65	6D	61
74	69	63	73	3F	20	49	74	20	69	73	20	6F	6E	6C
79	20	61	20	73	79	73	74	65	6D	61	74	69	63	20
65	66	66	6F	72	74	20	6F	66	20	73	6F	6C	76	69
6E	67	20	70	75	7A	7A	6C	65	73	20	70	6F	73	65
64	20	62	79	20	6E	61	74	75	72	65	2E			

Exercise 7.

Encode the following quote in binary. "Mathematics is the music of reason."

Exercise 8.

Give the number of characters in the following UTF-8 code.

F5 B2 A3 91 2C C1 9D 30.

Exercise 9.

1. Encode in UTF-8 the arabic character

م

- of Unicode code. U + FEE9, follow this instructions.
- Convert 0645 to binary.
- Determine the number of significant bits.
- Choose a design.
- Give the binary code.
- Covert this code to hexadecimal.
- 2. Determine the Unicode code of the UTF-8 encoded character in hexadecimal D8AA

ت

Exercise 10.

1. Determine the 8-bit or 16-bit; SM, 1C and 2C of the following numbers.

$$+42, -70, -56_8, -AF_{16}, -2C_{16} - 128.$$

0

2. Convert the following numbers to decimal representation.

 $00011001_{SM}, 10000101_{SM}, 00101101_{1C}, 11001111_{1C}, 1000000_{2C}, 00101100_{2C}, 111100_{2C}, 11100_{2C}, 111100_{2C}, 11100_{2C}, 111100_{2C}, 11100_{2C}, 111100_{2C}, 11100_{2C}, 1100_{2C}, 1100_{2C$

Exercise 11.

Perform the following addition operations; using 1's complement format, then 2's complement format in 8-bit representation. Indicate the reason for any errors.

+49-65, -127-1, -32+32, -127-5.

Exercise 12.

Let X be an integer defined by

 $X = (a_7 a_6 a_5 a_4 a_3 a_2 a_1 a_0)_{2C},$

we note by |X| the absolute value of X. Define |X| in 2C.

Exercise 13.

- 1. Represent -118.625 in the IEEE 754 single-precision format,
- 2. Decode the number $FOCCAA_{16}$, written in the IEEE 754 single-precision format