
Introduction Logic Gates Boolean Algebra Simplification techniques

Boolean Algebra

A. Chouraqui-Benchaib

Mathematics Department,
Tlemcen University.

1 / 57

Introduction Logic Gates Boolean Algebra Simplification techniques

Outline
1 Introduction

Definitions
2 Logic Gates

OR Gate
AND Gate
NOT Gate
EXCLUSIVE-OR Gate
NAND Gate
NOR Gate
Three-state buffer
Different representations of a logical function

3 Boolean Algebra
Principle of duality
Theorems of Boolean Algebra
Examples of algebric simplification

4 Simplification techniques
Sum-of-Products Boolean Expressions or First canonical
form (disjunctive canonical form)
Product-of-Sums Boolean Expressions or second
canonical form (conjunctive canonical form)

2 / 57

Introduction Logic Gates Boolean Algebra Simplification techniques

This chapter is divided into two parts. We first give some
definitions to introduce Boolean Algebra; we define logic gates
which are electronic circuits that can be used to implement the
logic expressions also known as Boolean expressions. There
are three basic logic gates, namely the OR gate, the AND gate
and the NOT gate, the EXCLUSIVE-OR gate and the
EXCLUSIVE-NOR gate. In the second part we present
postulates for the definition of Boolean algebra. Boolean
algebra is mathematics of logic, developped in 1854 by George
Boole to treat the logic functions, it is used for simplification of
complex logic expressions. Other simple techniques of
simplification are Karnaugh maps and the tabular method given
by Quine-McCluskey.

3 / 57

Introduction Logic Gates Boolean Algebra Simplification techniques

Definitions

Definition
The binary variables (boolean variable), as we know can have
either of the two states, i.e. the logic ′0′ state or the logic ′1′

state. A variable in state 1 is referred to as active and the
symbols 0 and 1 represent logical states but do not have a
numerical value.

Example
A suitable K can only have two states: open ′0′ or closed ′1′.

4 / 57

Introduction Logic Gates Boolean Algebra Simplification techniques

Definitions

Definition
A logical (binary or Boolean) function of binary variables is a
function whose values can be either of the two states, ′0′ or ′1′.

Definition
A truth table of a logical function is a table who lists all possible
combinations of input binary variables and the corresponding
outputs of a logic system. Note that a truth table of logical
function with n binary variables is a table with n + 1 columns
and 2n lines.

Example
If the number of input binary variables is 2, then there are
22 = 4 possible input combinations.

5 / 57

Introduction Logic Gates Boolean Algebra Simplification techniques

Definitions

Example
Let f be a logical function with two binary variables a and b,
defined by:

f (a,b) =

{
1; if a = b = 1
0 otherwise.

a b f (a,b)
0 0 0
0 1 0
1 0 0
1 1 1

6 / 57

Introduction Logic Gates Boolean Algebra Simplification techniques

We define a set of components, known as logic gates, each of
one corresponds to a logical function. The three basic logic
gates are the OR gate, the AND gate and the NOT gate.

7 / 57

Introduction Logic Gates Boolean Algebra Simplification techniques

OR Gate

OR Gate

An OR gate is a logic circuit with two ore more inputs and one
output. The output of an OR gate is LOW (0) if and only if all of
its inputs are LOW, for all other possible input combinations, the
output is HIGH. Figure1 shows the circuit symbol and the truth
table of a two-input OR gate Y = A + B.

8 / 57

Introduction Logic Gates Boolean Algebra Simplification techniques

OR Gate

OR Gate

A B A + B
0 0 0
0 1 1
1 0 1
1 1 1

Figure: Two-input OR Gate

9 / 57

Introduction Logic Gates Boolean Algebra Simplification techniques

AND Gate

AND Gate

An AND gate is a logic circuit with two ore more inputs and one
output. The output of an AND gate is HIGH (1) if and only if all
of its inputs are HIGH, for all other possible input combinations,
the output is LOW (0). Figure2 shows the circuit symbol and
the truth table of a two-input AND gate Y = A · B.

10 / 57

Introduction Logic Gates Boolean Algebra Simplification techniques

AND Gate

A B A · B
0 0 0
0 1 0
1 0 0
1 1 1

Figure: Two-input AND Gate

11 / 57

Introduction Logic Gates Boolean Algebra Simplification techniques

NOT Gate

NOT Gate

An NOT gate is a logic circuit with one input and one output.
The output is always the complement of the input, i.e a LOW
input produces a HIGH output, and vice versa. Figure3 shows
the circuit symbol and the truth table of a NOT gate (X is the
complement of X).

12 / 57

Introduction Logic Gates Boolean Algebra Simplification techniques

NOT Gate

X X
0 1
1 0

Figure: NOT Gate

13 / 57

Introduction Logic Gates Boolean Algebra Simplification techniques

EXCLUSIVE-OR Gate

EXCLUSIVE-OR Gate

The EXCLUSIVE-OR gate, written as EX-OR gate, with
two-input and one-output. Figure?? shows the logic symbol
and truth table of a two-input EX-OR gate. We see from the
truth table, that the output of an EX-OR gate is a logic ′1′ when
the inputs are unlike and a logic ′0′ when the inputs are like.
The output of a two-input EX-OR gate is expressed by

Y = (A ⊕ B) = A · B + A · B.

14 / 57

Introduction Logic Gates Boolean Algebra Simplification techniques

NAND Gate

NAND Gate

NAND is an abbreviation of NOT AND, the truth table of a
NAND gate is obtained from the truth table of an AND gate by
complementing the output entries. Figure 16 shows the circuit
symbol of a two-input NAND gate. The little invert bubble (small
circle) on the right end of the symbol means to invert the output
of AND.

15 / 57

Introduction Logic Gates Boolean Algebra Simplification techniques

NAND Gate

A B A · B
0 0 1
0 1 1
1 0 1
1 1 0

Figure: NAND Gate

16 / 57

Introduction Logic Gates Boolean Algebra Simplification techniques

NOR Gate

NOR Gate

NOR is an abbreviation of NOT OR, the truth table of a NOR
gate is obtained from the truth table of an OR gate by
complementing the output entries. Figure NOR shows the
circuit symbol of a two-input NOR gate.

17 / 57

Introduction Logic Gates Boolean Algebra Simplification techniques

NOR Gate

A B A + B
0 0 1
0 1 0
1 0 0
1 1 0

Figure: NOR Gate

18 / 57

Introduction Logic Gates Boolean Algebra Simplification techniques

Three-state buffer

Three-state buffer

A three-state buffer functions as a signal-controlled switch. An
enable signal controls whether the input signal is sent to the
output or isolated from the output, which remains in a
high-impedance state. Figure19 shows circuit and the truth
table of the three-state buffer; (Z: High impedance state)

E X Y
0 x Z
1 0 0
1 1 1

Figure: Three-state buffer

19 / 57

Introduction Logic Gates Boolean Algebra Simplification techniques

Different representations of a logical function

Electric representation

The diagram is created by interaction using electronic
components, in other words it is implemented practically with
electrical components in a laboratory.

20 / 57

Introduction Logic Gates Boolean Algebra Simplification techniques

Different representations of a logical function

Algebric representation

For the algebric representation, we use the logical operations
such that +, ·,⊕.

Example
f is a logical function with algebric representation.

f (a,b) = a · b︸︷︷︸
logical term

+a · b

21 / 57

Introduction Logic Gates Boolean Algebra Simplification techniques

Different representations of a logical function

Arithmetic representation

The arithmetic representation means representation by the
truth table.

Example
The arithmetic representation of f (A,B) = A · B + A + C · D is
given by the following truth table

22 / 57

Introduction Logic Gates Boolean Algebra Simplification techniques

Different representations of a logical function

Time representation or Timing diagram-Chronogram

The timing diagram is a graphical representation that illustrates
the timing relationships between various signals or events in a
system; often employed in electronics, digital design, and other
fields to study and understand system behaviour across time.

Example
Complete the timing diagram of the logical function S = A + B.

Figure: Chronogram of S

23 / 57

Introduction Logic Gates Boolean Algebra Simplification techniques

Different representations of a logical function

Graphic representation-diagram

We can define a logical function by representing it using logic
gates, then read it from left to right. We call this representation
Diagram.

24 / 57

Introduction Logic Gates Boolean Algebra Simplification techniques

Different representations of a logical function

Example
The following diagram represents the logical function

f (a,b) = a · b + a · b.

Figure: Diagram of f

25 / 57

Introduction Logic Gates Boolean Algebra Simplification techniques

Boolean Algebra

Boolean algebra, is simpler than ordinary algebra, it is also
composed of a set of symbols and a set of rules to manipulate
these symbols.

Definition
Let B be a set of logical variables supplied with two binary
operations AND noted by "· ", OR noted by "+ " and NOT noted
by "− ", (B, ·,+,−) is a Boolean algebra if and only if the
following postulates (axioms) are verified.

26 / 57

Introduction Logic Gates Boolean Algebra Simplification techniques

Axioms

Definition
(A) Commutativity: ∀ a,b ∈ B : a + b = b + a and a · b = b · a.
(B) associativity:

∀ a,b, c ∈ B : (a+b)+c = a+(b+c) and (a·b)·c = a·(b·c).
(C) distrubitivity: ∀ a,b, c ∈ B : a · (b + c) =

a · b + a · c and a + b · c = (a + b) · (a + c).
(D) ∀a ∈ B : a + 0 = a and a · 1 = a.
(E) For all element a in B, there exist a unique complement

element noted by a such that a + a = 1 and a · a = 0.

27 / 57

Introduction Logic Gates Boolean Algebra Simplification techniques

Example

1 (P(E),∩,∪, C) is a Boolean algebra.
2 (P,∧,∨,−) is a Boolean algebra; where P is a set of

propositions.

28 / 57

Introduction Logic Gates Boolean Algebra Simplification techniques

Principle of duality

The dual of a Boolean expression is obtained by replacing all
” · ” operations by ” + ” operations, all ” + ”operations by
” · ”operations, all 0s by 1s and all 1s by 0s and living all literals
unchanged.

Example
The coresponding dual of the Boolean expression
(a + b) · (a + b) is (a · b) + (a · b)

Duals of Boolean expressions are mainly of interest in the study
of Boolean postulates and theorems.

29 / 57

Introduction Logic Gates Boolean Algebra Simplification techniques

Theorems of Boolean Algebra

Idempotent

We apply theorems of Boolean algebra to simplify Boolean
expressions and transform them into a more useful and
meaningful expressions. We note that if a given expression is
valid, its dual will also be valid.

Theorem
(Idempotent or Identity Laws)

∀a ∈ B; a + a = a and a · a = a.

30 / 57

Introduction Logic Gates Boolean Algebra Simplification techniques

Theorems of Boolean Algebra

Theorem2

Theorem

0 = 1 and 1 = 0.

31 / 57

Introduction Logic Gates Boolean Algebra Simplification techniques

Theorems of Boolean Algebra

Theorem3

Theorem
(Operations with ’0’ and ’1’)

∀a ∈ B; a · 0 = 0 and a + 1 = 1.

32 / 57

Introduction Logic Gates Boolean Algebra Simplification techniques

Theorems of Boolean Algebra

Involution law

Theorem

∀a ∈ B; a = a.

33 / 57

Introduction Logic Gates Boolean Algebra Simplification techniques

Theorems of Boolean Algebra

Absoption Law1

Theorem

∀a,b ∈ B; a + a · b = a and a · (a + b) = a

34 / 57

Introduction Logic Gates Boolean Algebra Simplification techniques

Theorems of Boolean Algebra

Absorption Law2

Theorem
(Absorption Law2)

∀a,b ∈ B; a + a · b = a + b and a · (a + b) = a · b.

35 / 57

Introduction Logic Gates Boolean Algebra Simplification techniques

Theorems of Boolean Algebra

Consensus Theorem

Theorem

∀a,b, c ∈ B; a · b + b · c + a · c = a · b + a · c,
(a + b) · (b + c) · (a + c) = (a + b) · (a + c)

36 / 57

Introduction Logic Gates Boolean Algebra Simplification techniques

Theorems of Boolean Algebra

Theorem 8

Theorem

∀a,b, c ∈ B; (a + c) · (a + b) = a · b + a · c,
a · c + a · b = (a + b) · (a + c).

37 / 57

Introduction Logic Gates Boolean Algebra Simplification techniques

Theorems of Boolean Algebra

DeMorgan’s Theorem

Theorem

∀a,b ∈ B; a + b = a · b and a · b = a + b.

38 / 57

Introduction Logic Gates Boolean Algebra Simplification techniques

Theorems of Boolean Algebra

The above theorems and postulats are used to simplify boolean
expressions, we call this method the algebric simplification and
the theorem of involution law is the basis of finding the
equivalent product-of-sums expression for a given
sum-of-products expression, and vice versa.

Example
Apply boolean laws and theorems to modify a two-input OR
gate into two-input NAND gates only.

39 / 57

Introduction Logic Gates Boolean Algebra Simplification techniques

Theorems of Boolean Algebra

The two-input NAND gate (NOR resp.) is a complete gate
because we can use it to implement AND, OR, NOT, NAND,
NOR and NOT with many inputs.

a = a · a Idempotent law.

40 / 57

Introduction Logic Gates Boolean Algebra Simplification techniques

Theorems of Boolean Algebra

a · b = a · b,

41 / 57

Introduction Logic Gates Boolean Algebra Simplification techniques

Theorems of Boolean Algebra

a + b = a + b = a · b,

42 / 57

Introduction Logic Gates Boolean Algebra Simplification techniques

Theorems of Boolean Algebra

Similary,

a = a + a Idemptent law,

43 / 57

Introduction Logic Gates Boolean Algebra Simplification techniques

Theorems of Boolean Algebra

a + b = a + b,

44 / 57

Introduction Logic Gates Boolean Algebra Simplification techniques

Theorems of Boolean Algebra

a · b = a · b = a + b,

45 / 57

Introduction Logic Gates Boolean Algebra Simplification techniques

Examples of algebric simplification

Example1

Example
Show that.

1 (a · b)⊕ (a + b) = a ⊕ b.
2 a · b + c + c · (a + b) = 1.

46 / 57

Introduction Logic Gates Boolean Algebra Simplification techniques

Examples of algebric simplification

Example2

Example
Simplify the following expression.

S = a · b · c + a · b · c + a · b · c + a · b · c + a · b · c.

47 / 57

Introduction Logic Gates Boolean Algebra Simplification techniques

The primary objective of simplification is to obtain an
expression that has the minimum number of logical terms.
There are other methods of simplification than the application of
laws and theorems of Boolean algebra such as the Karnaugh
map method and the Quine-Mc Cluskey tabular method.
We first describe sum-of products and product-of sums
Boolean expressions, to will be able to minimize expressions in
the same or the other form

48 / 57

Introduction Logic Gates Boolean Algebra Simplification techniques

Sum-of-Products Boolean Expressions or First canonical form (disjunctive canonical form)

SOP

A sum-of-products expression contains the sum of different
terms (product of all logical variables). It can be obtained
directly from the truth table by considering those input
combinations that produce ′1′ at the output.
Different terms are given by the product of the inputs, where ′0′

means complemented variable and ′1′ means uncomplemented
variable, and the sum of all such terms gives the expression.

49 / 57

Introduction Logic Gates Boolean Algebra Simplification techniques

Sum-of-Products Boolean Expressions or First canonical form (disjunctive canonical form)

Example of SOP

Example
We give a boolean expression of a truth table.....

50 / 57

Introduction Logic Gates Boolean Algebra Simplification techniques

Sum-of-Products Boolean Expressions or First canonical form (disjunctive canonical form)

minterms

Definition
We mean by minterm the term mi , where i represents the
decimal equivalent of the logical values product of the inputs
from the truth table, mi is the product of logical variables
complemented or not. With n logical variables, we construct 2n

minterms.

Example
For two inputs a,b, we have four minterms
m0 = a · b,m1 = a · b,m2 = a · b and m3 = a · b which
correspond, respecively to 00,01,10 and 11.
We write the above boolean function with minterms...

51 / 57

Introduction Logic Gates Boolean Algebra Simplification techniques

Product-of-Sums Boolean Expressions or second canonical form (conjunctive canonical form)

POS

A product-of-sums expression contains the product of different
terms (sum of all logical variables). It can be obtained directly
from the truth table by considering those input combinations
that produce ′0′ at the output.
Different terms are given by the sum of the inputs, where ′0′

means uncomplemented variable and ′1′ means complemented
variable, the product of such terms gives the expression.
An OR gate produces a logic ′0′ only when all its inputs are in
the logic ′0′ state.

Example
See your document....

52 / 57

Introduction Logic Gates Boolean Algebra Simplification techniques

Product-of-Sums Boolean Expressions or second canonical form (conjunctive canonical form)

Maxterm

A product-of-sums expression is also known us a maxterm
expression.

Definition
We mean by maxterm the term Mi , where i represents the
decimal equivalent of the logical values sum of the inputs from
the truth table, Mi is the sum of logical variables complemented
or not. With n logical variables, we construct 2n maxterms.

Example
For two inputs a,b, we have four maxterms
M0 = a + b,m1 = a + b,m2 = a + b and m3 = a + b which
correspond, respecively to 00,01,10 and 11.

53 / 57

Introduction Logic Gates Boolean Algebra Simplification techniques

Product-of-Sums Boolean Expressions or second canonical form (conjunctive canonical form)

a b minterms maxterms Binary form Decimal form
0 0 m0 = a · b M0 = a + b 00 0
0 1 m1 = a · b M1 = a + b 01 1
1 0 m2 = a · b M2 = a + b 10 2
1 1 m3 = a · b M3 = a + b 11 3

a + b = 0 ⇐⇒ a = 1andb = 0 then the binary form of this
term is 10.

54 / 57

Introduction Logic Gates Boolean Algebra Simplification techniques

Product-of-Sums Boolean Expressions or second canonical form (conjunctive canonical form)

Example

Example
We consider the logical function f defined by

f (a,b, c) = a + b · c.

Let us give the SOP form.

f (a,b, c) = a + b · c

= a · 1 · 1 + 1 · b · c

= a · (b + b) · (c + c) + (a + a) · b · c

= a · b · c + a · b · c + a · b · c︸ ︷︷ ︸+a · b · c + a · b · c︸ ︷︷ ︸+a · b · c+

+ a · b · c

= a · b · c︸ ︷︷ ︸
111

+a · b · c︸ ︷︷ ︸
110

+a · b · c︸ ︷︷ ︸
101

+a · b · c︸ ︷︷ ︸
100

+a · b · c︸ ︷︷ ︸
001

=
∑

(1,4,5,6,7)

= m1 + m4 + m5 + m6 + m7.

55 / 57

Introduction Logic Gates Boolean Algebra Simplification techniques

Product-of-Sums Boolean Expressions or second canonical form (conjunctive canonical form)

Example
Let us give the POS form.

f (a,b, c) = a + b · c

= (a + b) · (a + c)

= (a + b + 0) · (a + 0 + c)

= (a + b + c · c) · (a + b · b + c)

= (a + b + c) · (a + b + c) · (a + b + c) · (a + b + c)

= (a + b + c) · (a + b + c) · (a + b + c)
= M0 · M2 · M3.

=
∏

(0,2,3).

56 / 57

Introduction Logic Gates Boolean Algebra Simplification techniques

Product-of-Sums Boolean Expressions or second canonical form (conjunctive canonical form)

We will note the complement of f (a,b, c) by f ′(a,b, c), then
from SOP form

f ′(a,b, c) = (a + b + c) · (a + b + c) · (a + b + c) · (a + b + c) · (a + b + c)

=
∏

(1,4,5,6,7),

and from the POS form, we obtain

f ′(a,b, c) = a · b · c + a · b · c + a · b · c

=
∑

(0,2,3).

57 / 57

	Introduction
	Definitions

	Logic Gates
	OR Gate
	AND Gate
	NOT Gate
	EXCLUSIVE-OR Gate
	NAND Gate
	NOR Gate
	Three-state buffer
	Different representations of a logical function

	Boolean Algebra
	Principle of duality
	Theorems of Boolean Algebra
	Examples of algebric simplification

	Simplification techniques
	Sum-of-Products Boolean Expressions or First canonical form (disjunctive canonical form)
	Product-of-Sums Boolean Expressions or second canonical form (conjunctive canonical form)

