
Binary Codes Alphanumeric Codes Representation of numbers Fractional numbers

Data representation

A. Chouraqui-Benchaib

Tlemcen University,
Tlemcen, Algeria.

1 / 53



Binary Codes Alphanumeric Codes Representation of numbers Fractional numbers

Outline
1 Binary Codes

Straight Binary
Gray code

Straight Binary-Gray code and Gray code-Straight Binary
conversions

Binary Coded Decimal
BCD-to-Binary Conversion
Binary-to-BCD Conversion

Excess-3 Code
2 Alphanumeric Codes

ASCII code
EBCDIC code
Unicode

UTF Code
From Unicode to UTF-8

3 Representation of numbers
Integers

Sign-magnitude representation
1’s Complement

1’s Complement addition
2’s Complement
2’s Complement addition

4 Fractional numbers
Fixed-point
Floating-Point Numbers
IEEE-754 formats

2 / 53



Binary Codes Alphanumeric Codes Representation of numbers Fractional numbers

Straight Binary

Definition-Straight Binary

Definition
Straight Binary code is simply the radix 2 number system, It is
used to represent natural numbers.(Table)

Example
Going from 3 = 112 to 4 = 1002, two bits change. This problem
is solved by the following code.

3 / 53



Binary Codes Alphanumeric Codes Representation of numbers Fractional numbers

Gray code

Gray code

Gray code (or reflected binary code) is a non-weighted code, as
it does not ascribe a specific weight to each bit position. It is not
used for arithmetic calculations. The process of generation of
higher-bit Gray codes using the reflect-and-prefix method is
illustrated in the table (see your manuscript); the columns of
bits between those representing the Gray codes give the
intermediate step of writing the code followed by the same
written in reverse order.

4 / 53



Binary Codes Alphanumeric Codes Representation of numbers Fractional numbers

Gray code

See the table which lists the binary and Gray code equivalents
of decimal numbers 0 − 15, an examination shows that the last
and the first entry also differ by only 1 bit. This is known as the
cyclic property of the Gray code.

5 / 53



Binary Codes Alphanumeric Codes Representation of numbers Fractional numbers

Gray code

Straight Binary-Gray code & Gray code-Straight Binary

The conversion of a Straight Binary number to Gray code is
carried out by making use of the following observations:

the most significant Gray code bit situated to the extreme
left, is the same as the corrresponding MSB for the
Straight Binary number.
starting from the left, add, without taking into account the
carry-out bit, each pair of adjacent bits to obtain the next
bit in Gray code.

To convert Gray code to a Straight Binary number:
the MSB of the Straight Binary number, located at the
extreme left, is identical to the corresponding Gray code
bit;
starting from the left, add each new bit of the Straight
Binary code to the next bit of the Gray code, without taking
into account any carry-out bit, to obtain the next bit of the
Straight Binary code. 6 / 53



Binary Codes Alphanumeric Codes Representation of numbers Fractional numbers

Gray code

Example

Example
1 Convert the Straight Binary number (101101)2 to Gray

code.
1 + 0 + 1 + 1 + 0 + 1
↓ ↓ ↓ ↓ ↓ ↓
1 1 1 0 1 1

2 Convert the Gray code (110011)GR to a Straight Binary
number.
1 1 0 0 1 1
↓ ↗ ↓ ↗ ↓ ↗ ↓ ↗ ↓ ↗ ↓
1 0 0 0 1 0

7 / 53



Binary Codes Alphanumeric Codes Representation of numbers Fractional numbers

Binary Coded Decimal

BCD

The binary coded decimal (BCD) is a type of binarry code used
to represent a given decimal number in an aquivalent binary
form. The BCD equivalent of a decimal number is written by
replacing each decimal digit with its four-bit binary equivalent.
As an example, the BCD equivalent of 425 is written as
(0100 0010 0101)BCD. Table 1 lists the BCD code.

8 / 53



Binary Codes Alphanumeric Codes Representation of numbers Fractional numbers

Binary Coded Decimal

BCD

Table: BCD code

Decimal BCD code
0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
8 1000
9 1001

9 / 53



Binary Codes Alphanumeric Codes Representation of numbers Fractional numbers

Binary Coded Decimal

BCD-Binary

A given BCD number can be converted into an equivalent
binary number by first writing its decimal equivalent and then
converting it into its binary equivalent.

10 / 53



Binary Codes Alphanumeric Codes Representation of numbers Fractional numbers

Binary Coded Decimal

Example

Example
Find the binary equivalent of the BCD number (1000︸ ︷︷ ︸

8

0101︸ ︷︷ ︸
5

)BCD,

the corresponding decimal number is:85, therefore

11 / 53



Binary Codes Alphanumeric Codes Representation of numbers Fractional numbers

Binary Coded Decimal

85 2

421 2

210 2

101 2

50 2

21 2

10 2

01 85 = 10101012

12 / 53



Binary Codes Alphanumeric Codes Representation of numbers Fractional numbers

Binary Coded Decimal

Binary-to-BCD Conversion

The process of binary-to-BCD conversion is the same as the
process of BCD-to-binary conversion executed in reverse order.

Example
Find the BCD equivalent of the binary number 101000011. The
decimal equivalent of this binary number is 323, then the BCD
equivalent is 001100100011BCD.

13 / 53



Binary Codes Alphanumeric Codes Representation of numbers Fractional numbers

Excess-3 Code

XS-3

The excess-3 code is another important BCD code. The
excess-3 for a given decimal number is determined by adding
′3′ to each decimal digit in the given number and then replacing
each digit of the newly found decimal number by its four-bit
binary equivalent. Table 2 lists the Excess-3 code for the
decimal numbers 0 − 9.

14 / 53



Binary Codes Alphanumeric Codes Representation of numbers Fractional numbers

Excess-3 Code

XS-3

Table: Excess-3 Code

Decimal number Excess-3 code Decimal number Excess-3 code
0 0011 5 1000
1 0100 6 1001
2 0101 7 1010
3 0110 8 1011
4 0111 9 1100

15 / 53



Binary Codes Alphanumeric Codes Representation of numbers Fractional numbers

Excess-3 Code

Examples

Example
Find the excess-3 code for the decimal number 541.

The addition of ′3′ to each digit yields the three new
numbers ′8′,′ 7′ and ′4′.
The corresponding four-bit binary equivalents are
1000,0111 and 0100 respectively.
The excess-3 code for 541 is therefore given by:
100001110100XS−3.

16 / 53



Binary Codes Alphanumeric Codes Representation of numbers Fractional numbers

Excess-3 Code

Example
Find the decimal equivalent of the excess-3 number
(010111000011)XS−3.
Subtracting 0011 from each four-bit group, we obtain the BCD
number code 0010 1001 0000, so the decimal equivalent is:
290.

17 / 53



Binary Codes Alphanumeric Codes Representation of numbers Fractional numbers

Introduction

Alphanumeric codes, also called UTF character codes, are
binary codes used to represent alphanumeric data. The codes
write alphanumeric data, including letters of the alphabet,
numbers, mathematical symbols and punctuation marks, in a
form that is understandable and processable by a computer.
These codes enable us to interface input-output devices such
as keyboards, printers, VDUs, etc, with the computer. Two
widely used alphanumeric codes include the ASCII and
EBCDIC codes but they have a limitation in terms of the
number of characters they can encode, so they not permit
multilingual computer processing. Unicode, developed jointly by
the Unicode Consortium and the International Standards
Organization (ISO), is the most complete character encoding
scheme that allows text of all forms and languages to be
encoded for use by compters.

18 / 53



Binary Codes Alphanumeric Codes Representation of numbers Fractional numbers

ASCII code

ASCII code

The ASCII (American Standard Code for Information
Interchange), pronounced ’ask-ee’, is strictly a seven-bit code
based on the English alphabet, ASCII codes are used to
represent alphanumeric data in computers, communications
equipment and other devices. It is a seven-bit code, it can at
the most represent 128 characters. It currently defines 95
printable characters including 26 upper-case letters (A to Z), 26
lower-case letters (a to z), 10 numerals (0 to 9) and 33 special
characters including mathematical symbols, punctuation marks
and space character. It defines codes for 33 nonprinting, mostly
obsolete control characters that affect how text is processed.
Table lists the ASCII codes for all 128 characters. When the
ASCII code was introduced, many computers dealt with
eight-bit groups (or bytes) as the smallest unit of information.

19 / 53



Binary Codes Alphanumeric Codes Representation of numbers Fractional numbers

ASCII code

Example

Example
Represent YES in ASCII code (hexadecimal). From ASCII
table; we have Y:59, E:45, S:53. Therefore YES is coded by
59 45 53.

20 / 53



Binary Codes Alphanumeric Codes Representation of numbers Fractional numbers

EBCDIC code

The EBCDIC (Extended Binary Coded Decimal Interchange
Code), pronounced ’eb-si-dik’, is another widely used
alphanumeric code, mainly popular with larger systems. The
code was created by IBM to extend the binary coded decimal
that existed at that time. All IBM mainframe computer
peripherals and operating systems use EBCDIC code, and their
operating systems provide ASCII and Unicode modes to allow
translation between different encodings. It is an eight-bit code
and thus can accommodate up to 256 characters. A single byte
in EBCDIC is divided into two nibbles (four-bit groups).

Example
’K’ is coded in EBCDIC by D2 in hexadecimal and 1101︸ ︷︷ ︸

zone

0010︸ ︷︷ ︸
digit

;

’zone’ represents the category and ’digit’ identifies the specific
character.

21 / 53



Binary Codes Alphanumeric Codes Representation of numbers Fractional numbers

Unicode

Unicode

As briefly mentioned in the earlier sections, encodings such as
ASCII, EBCDIC and their variants do not have a sufficient
number of chracters to be able to encode alphanumeric data of
all forms, scripts and languages. Two different encodings may
use the same number for two different characters or different
numbers for the same characters. For example, 4B (in hex)
represents the upper-case letter ’K’ in ASCII code and the point
’.’ in the EBCDIC code. Unicode developed jointly by the
Unicode Consortium and the International Organization for
Standardization (ISO), is the most complete character encoding
scheme that allows text of all forms and languages to be
encoded for use by computers. Different characters in Unicode
are represented by a hexadecimal number preceded by ’U+’.

Example
’T’ is coded by U + 0054 and ’t’ is coded by U + 021B.

22 / 53



Binary Codes Alphanumeric Codes Representation of numbers Fractional numbers

Unicode

UTF code

The Unicode Standard provides three distinct encoding forms
for Unicode characters, using 8-bit, 16-bit and 32-bit units.
These are named UTF-8, UTF-16 and UTF-32, respectively.
The "UTF" is a carryover from earlier terminology meaning
Unicode Transformation Format. Each of these three encoding
forms is an equally legitimate mechanism for representing
Unicode characters, each has advantages in different
environements. To meet the requirement of byte-oriented,
ASCII-based systems, one of the third encoding form specified
by the Unicode Standard is UTF-8, we use one byte for
characters in ASCII (7bits), and two, three or four bytes for the
other characters. It is more space-efficient and more
compatible with ASCII.

23 / 53



Binary Codes Alphanumeric Codes Representation of numbers Fractional numbers

Unicode

From Unicode to UTF-8

For encoding character in UTF-8 we follow the following steps.
The number of each character is provided by the Unicode
standard.
Characters with numbers from 0 to 127 are encoded in one
byte, with the most significant bit always being zero.
Characters with numbers higher than 127 are encoded
using multiple bytes. In this case, the most significant bits
of the first byte form a sequence of 1s of a length equal to
the number of bytes used to encode the character, with the
following bytes having 10 as their most significant bits.

24 / 53



Binary Codes Alphanumeric Codes Representation of numbers Fractional numbers

Unicode

UTF-8

Binary UTF-8 representation Meaning
0xxxxxxx (Ascii) For 1 to 7 significant bits (1 byte)
110xxxxx 10xxxxxx For 8 to 11 significant bits (2 bytes)
1110xxxx 10xxxxxx 10xxxxxx For 12 to 16 significant bits (3 bytes)
11110xxx 10xxxxxx 10xxxxxx 10xxxxxx For 17 to 21 significant bits (4 bytes)

25 / 53



Binary Codes Alphanumeric Codes Representation of numbers Fractional numbers

Unicode

Example

Example
Let us write the UTF-8 code of the symbol e coding in Unicode
by U+20AC

1 Write 20AC in binary code: 0010000010101100.
2 We have 14 significant bites: 10000010101100.
3 We encode the symbol in 3

bytes:11100010 10000010 10101100
4 We convert in hexadecimal: E282AC.

26 / 53



Binary Codes Alphanumeric Codes Representation of numbers Fractional numbers

Integers

Unsigned representation

We can easily prove that the maximal positif integer
representable in binary code with n digits; is 2n − 1. Suppose N
be the maximal positif integer, in n bits binary code

N =
n−1∑
i=0

2i = 20 + 21 + 22 + · · ·+ 2n−1︸ ︷︷ ︸
sum of a geometric sequence

=
2n − 1
2 − 1

= 2n − 1

.

27 / 53



Binary Codes Alphanumeric Codes Representation of numbers Fractional numbers

Integers

Therefore, an n−bit binary representation can be used to
represent decimal numbers in the range of 0 to 2n − 1; n
représents the magnitude and c = 2n − 1 the capacity of
register containing this number. For sufficiently large n, we can
write c ≃ 2n, then
n = [log2c] + 1; where [.] denotes the floor number. This
relationship allows for estimating the length of a register who
can contain a given number.

Example
Let us find the minimum size of a register required to represent
integers less than or equal 300. We must search the naturel
number n such that 2n ≃ 300, so n = [log2300] + 1 = 9.So, it is
necessary to design a register with capacity at least nine bits.

28 / 53



Binary Codes Alphanumeric Codes Representation of numbers Fractional numbers

Integers

Sign-magnitude representation

In the sign-bit representation of positive and negative decimal
numbers, the MSB represents the ’sign’, with a ′0′ for a plus
sign and a ′1′ for a minus sign. The remaining bits represent
the magnitude. In the following, we represent a signed number
using 8, 16, 32,... bits.

Example

+7 = 0 0 0 0 0 1 1 1 and -7 =
1 0 0 0 0 1 1 1

29 / 53



Binary Codes Alphanumeric Codes Representation of numbers Fractional numbers

Integers

Interval of SM

An n-bit binary representation can be used to represent
decimal numbers in the range of −(2n−1 − 1) to + (2n−1 − 1);
we note this representation by SM (Sign-magnitud).

30 / 53



Binary Codes Alphanumeric Codes Representation of numbers Fractional numbers

Integers

Example
In 4-bit SM representation, we can represent decimal numbers
between −7 and + 7 as follow.

Decimal SM Decimal SM
+7 0111 -0 1000
+6 0110 -1 1001
+5 0101 -2 1010
+4 0100 -3 1011
+3 0011 -4 1100
+2 0010 -5 1101
+1 0001 -6 1110
+0 0000 -7 1111

31 / 53



Binary Codes Alphanumeric Codes Representation of numbers Fractional numbers

Integers

The sign-magnitude representation presents two problems.
Firstly in mathematics +0 = −0 = 0 but we remark that zero
has two representations in SM representation. Secondly, this
representation is not appropriate for addition operations. For
example (−4) + (+3) = +1 but in SM representation (for
reduction of magnitude we take 4 bits) we have
(1100)SM + (0011)SM = (1111)SM = −7, it’s incorrect.

32 / 53



Binary Codes Alphanumeric Codes Representation of numbers Fractional numbers

1’s Complement

Definitions

Definition
To obtain the 1’s Complement of binary number, we inverse 1 to
0 and 0 to 1.

Example
Let us define the 1’s Complement of 100102.
100102 = (01101)C1

Definition
To obtain the 1’s Complement of a sign-magnitude number, the
positive numbers remain unchanged and for negative numbers;
we keep the sign bit and convert the remaining bits to 1’s
Complement.

33 / 53



Binary Codes Alphanumeric Codes Representation of numbers Fractional numbers

1’s Complement

Example
The 1’s Complement of the decimal integer +9 is
(00001001)C1 = (00001001)SM , the 1’s Complement of the
decimal integer is
−9 = −10012 = (10001001)SM = (11110110)C1.

n bit notation can be used to represent numbers in the range
from −(2n−1 − 1) to +(2n−1 − 1) using the 1’s complement
format.

34 / 53



Binary Codes Alphanumeric Codes Representation of numbers Fractional numbers

1’s Complement

Example
In 4−bit 1’s Complement representation, we can represent
decimal numbers between −7 and + 7 as follow

Decimal SM 1’s Complement Decimal SM 1’s Complement
+7 0111 0111 -0 1000 1111
+6 0110 0110 -1 1001 1110
+5 0101 0101 -2 1010 1101
+4 0100 0100 -3 1011 1100
+3 0011 0011 -4 1100 1011
+2 0010 0010 -5 1101 1010
+1 0001 0001 -6 1110 1001
+0 0000 0000 -7 1111 1000

35 / 53



Binary Codes Alphanumeric Codes Representation of numbers Fractional numbers

1’s Complement

Principle of addition in 1C

One’s complement addition is based on the following principle.
If no carry is generated by the sign bit, the result is
accurate and expressed in 1’s Complement.
If a carry is generated by the sign bit, it will be added to the
result of the operation which is expressed in 1’s
Complement.

36 / 53



Binary Codes Alphanumeric Codes Representation of numbers Fractional numbers

1’s Complement

Example
Let us do the following 1’s complement addition.
35 + (−25) = (+100011)2 + (−11001)2 = (00100011)SM +
(10011001)SM = (00100011)C1 + (11100110)C1

10 10 1 0 10 10 1 1
+

1 1 1 0 0 1 1 0
1 ↪→ 0 0 0 0 1 0 10 1
+ 1
= 0 0 0 0 1 0 1 0

00001010C1 = +10102 = +10, the result is correct.

37 / 53



Binary Codes Alphanumeric Codes Representation of numbers Fractional numbers

1’s Complement

Example
15 − 34 = +15 + (−34) = (+1111)2 + (−100010)2 =
(00001111)SM + (10100010)SM =
(00001111)C1 + (11011101)C1

0 0 10 10 11 11 11 1
+

1 1 0 1 1 1 0 1
= 1 1 1 0 1 1 0 0

(11101100)C1 = (10010011)SM = (−10011)2 = −19, the result
is correct.

38 / 53



Binary Codes Alphanumeric Codes Representation of numbers Fractional numbers

1’s Complement

Definitions

Definition
To obtain the 2’s Complement of binary number, we add 1 to
the 1’s Complement.

Example
Let us give the 2’s Complement of 10011. We first define the
1’s Complement of this binary number: 100112 = (01100)C1,
then we add 1 to obtain the 2’s Complement
01100 + 1 = 01101, therefore 100112 = (01100)C1 = (1101)C2

Definition
To obtain the 2’s Complement of a sign-magnitude number, the
positive numbers remain unchanged and for negative numbers;
we keep the sign bit and convert the remaining bits to 2’s
Complement.

39 / 53



Binary Codes Alphanumeric Codes Representation of numbers Fractional numbers

1’s Complement

Example
The 2’s Complement of the decimal integer +10 is
(00001010)C2 = (00001010)C1 = (00001010)SM , the 2’s
Complement of the integer
−10 = −00010102 = (10001010)SM = (11110101)C1 =
(11110101 + 1)C2 = (11110110)C2.

Another method to obtain the 2’s Complement of integer
numbers is illustrated by the following definition.

Definition
To obtain the 2’s Complement of a sign-magnitude number, the
positive numbers remain unchanged and for negative numbers;
we keep the sign bit and starting from the right, we copy all the
zeros and the first encountered 1, then we invert the remaining
bits.

40 / 53



Binary Codes Alphanumeric Codes Representation of numbers Fractional numbers

1’s Complement

Example
1 The 2’s Complement of the decimal integer −10 is

(11110110)C2.
2 Let us give the 2’s Complement of the decimal integer

−15. We first find the SM corresponding number, then we
convert to the 2’s
Complement:(10001111)SM = (11110001)C2.

41 / 53



Binary Codes Alphanumeric Codes Representation of numbers Fractional numbers

1’s Complement

Remark

1 The n−bit notation of the 2’s Complement format can be
used to represent all decimal numbers from
−2n−1 to + (2n−1 − 1)

2 1 00 · · · 0︸ ︷︷ ︸
n−1 times

represents the smallest value on n bits in 2’s

Complement representation.

42 / 53



Binary Codes Alphanumeric Codes Representation of numbers Fractional numbers

1’s Complement

Example
In 4−bit 2’s Complement representation, we can represent
decimal numbers from −8 to + 7 as follow.

Decimal SM 1’s Complement 2’s Complement
+7 0111 0111 0111
+6 0110 0110 0110
+5 0101 0101 0101
+4 0100 0100 0100
+3 0011 0011 0011
+2 0010 0010 0010
+1 0001 0001 0001
+0 0000 0000 0000
-0 1000 1111 /
-1 1001 1110 1111
-2 1010 1101 1110
-3 1011 1100 1101

43 / 53



Binary Codes Alphanumeric Codes Representation of numbers Fractional numbers

1’s Complement

Decimal SM 1’s Complement 2’s Complement
-4 1100 1011 1100
-5 1101 1010 1011
-6 1110 1001 1010
-7 1111 1000 1001
-8 / / 1000

44 / 53



Binary Codes Alphanumeric Codes Representation of numbers Fractional numbers

1’s Complement

Remark

1 We see that zero has a unique representation.
2 1000 which represented 0 in SM representation,

represents -8 which is the smallest value in 4-bit 2’s
Complement representation.

45 / 53



Binary Codes Alphanumeric Codes Representation of numbers Fractional numbers

1’s Complement

2’s Complement addition is performed in the same manner as
for 1’s Complement, except that we do not carry over the
overflow but ignore it and the result in 2’s Complement.

Example
Let us do the following 2’s Complement addition.
35 + (−25) = (00100011)SM + (10011001)SM =
(00100011)C2 + (11100111)C2, the result is correct.

10 10 1 0 10 10 11 1
+

1 1 1 0 0 1 1 1
= ̸ 1 0 0 0 0 1 0 1 0

(00001010)C2 = (00001010)SM = (1010)2 = 10.

46 / 53



Binary Codes Alphanumeric Codes Representation of numbers Fractional numbers

Fixed-point

Fixed-point number

A fixed-point number is represented as a binary integer. The
position of the decimal point is managed by the programmer,
and it’s a drawback added to the limitation of values. It is
represented as follow.

Sign Enteger part with n bits Fractional part with p bits

Example
Let us represent a number in 6 bits; one bit for the sign, three
bits for enteger part and two bits for fractional part. The
minimum value is represented by (1 111 11)2 = −7.75 and the
maximum value is (0 111 11)2 = +7.75.

47 / 53



Binary Codes Alphanumeric Codes Representation of numbers Fractional numbers

Floating-Point Numbers

Floating-Point Numbers

At the begining the Floating-point representation was not
standardized and each computer used its own format. Several
standards were defined; among them the IEEE 754 standard
(Institute of electrical and electronics Engineers).
Floating-point numbers are in general expressed in the form

N = σMbE , (1)

where σ is the sign ±, M is the fractional part called the
significand or mantissa, E is the integer part, called the
exponent, and b is the base of the number system or
numeration. Fractional part M is a p−digit number of the form
(d .ddd · · · d), each digit d is an integer between 0 and b − 1.

48 / 53



Binary Codes Alphanumeric Codes Representation of numbers Fractional numbers

Floating-Point Numbers

Equation 1 in the case of decimal, hexadecimal and binary
number systems will be written as follows:

Decimal system
N = σM10E . (2)

Hexadecimal system

N = σM16E . (3)

Binary system
N = σM2E . (4)

Example
We represent 0.00001453, 14538, (643.ACE)16 in
floating-point notation. 0.00001453 = 1.453 × 10−5; 1453 =
1.453 × 83; 643.ACE = 6.43ACE × 162.

49 / 53



Binary Codes Alphanumeric Codes Representation of numbers Fractional numbers

IEEE-754 formats

The IEEE-754 floating point is the most commonly used
representation for real numbers on computer. Table 3 lists
characteristic parameters of single-precision and
double-precision. Floating-point numbers represented in
IEEE-754 format have three components including the sign, the
exponent and the mantissa. The n−bit exponent field needs to
represent both positive and negative exponent values. To
achieve this, a bias equal to 2n−1 − 1 is added to the actual
exponent in order to obtain the stored exponent. For the case
of single-precision format, we add 28−1 − 1 = 127 to the actual
exponent then we obtain the biased exponent which is noted by
Eb. Figure 1 shows the basics constituent parts of the
single-precision format.

50 / 53



Binary Codes Alphanumeric Codes Representation of numbers Fractional numbers

IEEE-754 formats

Table: characteristic parameters of IEE-754 format

Precision Sign (bit) Exponent (bits) Mantissa (bits) Total length (bits)
Single 1 8 23 32
Double 1 11 52 64

Sign (1 bit) Biased Exponent (8 bits) Mantissa (23 bits)

Figure: Single-precision format

51 / 53



Binary Codes Alphanumeric Codes Representation of numbers Fractional numbers

IEEE-754 formats

Example
Let us represent the number 2654 in IEEE-754 single-precision
format.
2654 = 1010010111102 = 1.01001011110 × 211. The three
components are:

Sign = 0.
Mantissa = 01001011110.
Actual exponent=11 and biased exponent;
Eb = 11 + 127 = 138 = 100010102.

Therefore, we represent the number as follow.
0︸︷︷︸

Sign

10001010︸ ︷︷ ︸
Biased exponent

01001011110000000000000︸ ︷︷ ︸
Mantissa

. We change

the number to hexadecimal form in order to make writing easier;

0100 0101 0010 0101 1110 0000 0000 0000 = 4525E00016.

52 / 53



Binary Codes Alphanumeric Codes Representation of numbers Fractional numbers

IEEE-754 formats

Example
Let us represent the hexadecimal IEEE-754 single-precision
format D2AC5000 in decimal.
C32C5000 = 1100 0011 0010 1100 0101 0000 0000 0000 =
11000011001011000101000000000000. The three
components are:

Sign =1, hence the number is negative.
Biased exponent =100001102 = 134, actual exponent is
given by E = 134 − 127 = 7.
Mantissa=01011000101.

So the number is
−1.01011000101 × 27 = −10101100.01012 =
−(27 + 25 + 23 + 22 + 2−2 + 2−3 = −172.375.

53 / 53


	Binary Codes
	Straight Binary
	Gray code 
	Binary Coded Decimal 
	Excess-3 Code

	Alphanumeric Codes
	ASCII code
	EBCDIC code
	Unicode

	Representation of numbers
	Integers
	1's Complement

	Fractional numbers
	Fixed-point
	Floating-Point Numbers
	IEEE-754 formats


