

<u>Supervised work N° 1 of Mecanics</u>

Dimensional analysis and uncertainty calculation

Exercise 1

Find the dimension of the following physical quantities:

Surface, Volume, Density, Frequency, Linear Velocity, Angular Velocity, Linear Acceleration, Angular Acceleration, Force, Work, Energy, Power, and Pressure.

Exercise 2

The characteristic equation of a constant temperature fluid is as follows:

$$\left(p + \frac{a}{V^2}\right)(V - b) = c$$

Or p is the pressure and V is the volume. Determine the dimensions of quantities a, b and c.

Exercise 3

Check the homogeneity of this formula:

$$p = \rho g h_1 + h_2 F$$

Such as: P pression, ρ density, g an acceleration of gravity, h_1 and h_2 are heights and F a force.

Exercise 4

1. In a fluid, a ray ball (نصف القطر) r animated by a velocity v, is subjected to a friction force given by F=-6 $\pi\eta$ rv, where η is the viscosity of the fluid.

What is the dimension of η ?

2. When the ball is dropped without initial speed at the moment t = 0, its speed is written to

— exp (–

$$t > 0: \qquad v = a \left(1\right)$$

Where a and b are two quantities that depend on the characteristics of the fluid. What are the dimensions of a and b?

Exercise 5

The sound emitted by the wire of a guitar is characterized by its frequency f. This frequency is a function of the force F of the wire tension, the length L and the density ρ of the wire. Find the expression of frequency f assuming the form:

$$f = K F^a L^b \rho^c$$

(With K a dimensionless constant and the frequency dimension $[f]=T^{-1}$).

Exercise 6

A. The momentum P (P=m.v where m is mass and v is velocity) associated with a photon depends on its frequency f according to the following expression :

University of Tlemcen Faculty of Sciences Department of Mathematics

University Year: 2024/2025 1st Year LMD-M and MI

$$P = \sigma^{\alpha} f^{\beta} c^{\gamma}$$

Where c is the speed of light and σ has the following dimension $[\sigma] = M.L^2.T^{-1}$.

Using dimensional analysis, find the exponents α , β et γ .

B. The average velocity of a gas molecule is given by the following formula:

$$\vartheta = \sqrt{\frac{PV}{m}}$$

m being the mass of the molecule, V the volume, and P the pressure of the gas.

1- Calculate the relative uncertainty of ϑ as a function of Δp , Δm et ΔV .

Exercise 7

The speed limit reached by a weighted parachute is a function of its weight P and its surface

S, is given by:
$$v = \sqrt{\frac{P}{K.S}}$$

1) Give the dimension of the constant k.

2) Calculate the speed limit of a parachute having the following characteristics:

M=90 kg, S=80 m2, g=9,81 m/s2, and k=1,15 MKS.

3) The weight being known to the nearest 2 % and the surface to 3 %, calculate the relative uncertainty $\Delta v/v$ on the velocity v, thus the absolute uncertainty Δv and deduce the condensed writing of this velocity.

Suplimentary Exercises

Exercise 1

The height H of a liquid of mass M contained in a cylinder of radius R is given by the relation:

$$H = \frac{(2.\sigma.\cos\alpha)}{(R.g.\rho)}$$

Where α is the liquid-cylinder contact angle, ρ the density of the liquid and g the gravity acceleration.

- 1- Using the dimensional equations, find the dimension of σ .
- 2- Determine relative uncertainty on σ based on absolute uncertainties $\Delta R,\,\Delta g,\,\Delta M$ and $\Delta\alpha.$

Exercise 2

The resonance frequency f of an electric circuit is given by the formula:

University of Tlemcen Faculty of Sciences Department of Mathematics

University Year: 2024/2025 1st Year LMD-M and MI

$$f = \frac{1}{2\pi\sqrt{L.C}}$$

L and C are known with absolute uncertainties ΔL and ΔC .

Determine as a function of L, C, Δ L and Δ C absolute and relative uncertainties on f with the two differential methods.