Université De Tlemcen

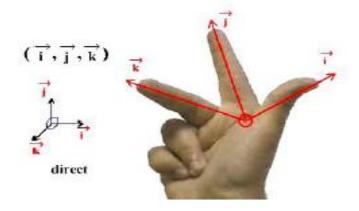
Département De Mathématiques

Faculté Des Sciences

1^{ERE} ANNEE LMD-M ET MI COURS DE MECANIQUE DU POINT MATERIEL

Chapitre II : Analyse vectorielle

Préparé par : Mme Hadjou Belaid Zakia



1. Introduction

En physique, on utilise deux types de grandeurs : les grandeurs scalaires et les grandeurs vectorielles :

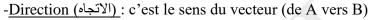
- -Grandeur scalaire المقدار السلمي: définie par un nombre (un scalaire) et une unité appropriée comme : le volume, la masse, la température, le temps ...
- -Grandeur vectorielle المقدار الشعاعي: c'est une quantité définie par un scalaire, une unité et une direction comme : Le vecteur de déplacement, la vitesse \vec{v} , le poids \vec{p} , le champ électrique ...

2. Définition d'un vecteur

Un vecteur (شعاع) est un segment de droite orienté qui a les caractères suivants :

-Origine(المبدأ): représente le point d'application « A»

-Support (الحامل): la droite qui porte le vecteur (Δ)



-Le module (الطويلة) : il donne la valeur <u>algébrique</u> du vecteur \overrightarrow{AB} notée :

$$\|\overrightarrow{AB}\| = |\overrightarrow{AB}| = AB$$

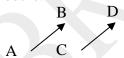
3. Propriétés

Vecteur libre : l'origine n'est pas fixe

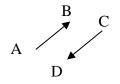
Vecteur glissant: le support est fixe par contre l'origine n'est pas fixe

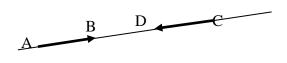
Vecteur lié: l'origine est fixe

Vecteurs égaux : s'ils ont la même direction, le même support ou des supports parallèles et le même module.



Vecteurs o**pposés** : s'ils le même support ou des supports parallèles, le même module mais le sens (la direction) est opposés.





 (Δ)

4. Vecteur unitaire شعاع الوحدة:

Un vecteur est dit unitaire si son module est égal à 1.

On écrit : $|\vec{u}|$ =1 et $\vec{V} = |\vec{V}| \vec{u}$

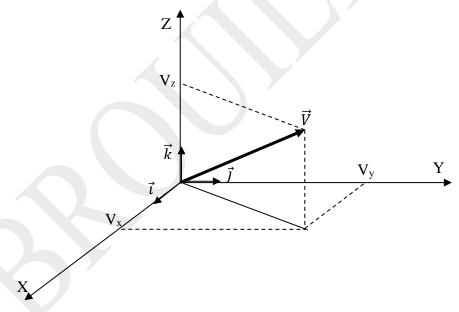
5. Mesure algébrique :

Soit un axe (Δ) portant les points O et A. O est l'origine, l'abscisse du point A est la mesure algébrique du vecteur \overrightarrow{OA} .

مركبات شعاع: 6. Composantes d'un vecteur

Les coordonnées d'un vecteur dans l'espace, représenté dans un repère de base orthonormé $R(O,\vec{\textit{t}},\vec{\textit{j}},\vec{\textit{k}}) \text{ sont } : V_x, V_y \text{ et } V_z \text{ tel que } :$

$$\vec{V} = V_x \vec{\imath} + V_y \vec{\jmath} + V_z \vec{k}$$



3

Le module du vecteur \vec{V} est : $V = \sqrt{V_x^2 + V_y^2 + V_z^2}$

En coordonnées cartésienne un vecteur s'écrit par:

$$\vec{V} = x\vec{\imath} + y\vec{\jmath} + z\vec{k} \implies V = ||\vec{V}|| = \sqrt{x^2 + y^2 + z^2}$$

7. Opérations élémentaires sur les vecteurs

7.1. Addition vectorielle

La somme de deux vecteurs \vec{A} et \vec{B} est \vec{w} , obtenue en utilisant le parallélogramme :

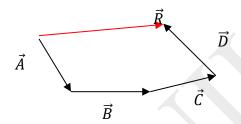
$$\vec{A} + \vec{B} = \vec{w}$$

Soit deux vecteurs \overrightarrow{A} et \overrightarrow{B} , $\overrightarrow{A} = x\overrightarrow{i} + y\overrightarrow{j} + z\overrightarrow{k}$ et $\overrightarrow{B} = x'\overrightarrow{i} + y'\overrightarrow{j} + z'\overrightarrow{k}$

$$\vec{A} \begin{pmatrix} x \\ y \\ z \end{pmatrix} et \vec{B} \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} donc \vec{A} + \vec{B} = \vec{w} = (x + x')\vec{i} + (y + y')\vec{j} + (z + z')\vec{k}$$

Remarque:

1. Pour plusieurs vecteurs : $\vec{A} + \vec{B} + \vec{C} + \vec{D} = \vec{R}$



2. Propriétés:

$$\vec{A} + \vec{B} = \vec{B} + \vec{A}$$
, $(\vec{A} + \vec{B}) + \vec{C} = \vec{A} + (\vec{B} + \vec{C})$, $\vec{A} - \vec{B} = \vec{A} + (-\vec{B})$

3. Relation de Charles :

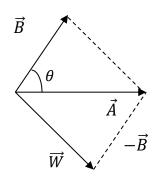
Soit les trois points A, B et C, on a : $\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$

7.2. La soustraction de deux vecteurs

C'est une opération anticommutative tel que : $\vec{W} = \vec{A} - \vec{B} = \vec{A} + (-\vec{B})$

Soit deux vecteurs \overrightarrow{A} et \overrightarrow{B} , $\overrightarrow{A} = x\overrightarrow{i} + y\overrightarrow{j} + z\overrightarrow{k}$ et $\overrightarrow{B} = x'\overrightarrow{i} + y'\overrightarrow{j} + z'\overrightarrow{k}$

$$\vec{A} \begin{pmatrix} x \\ y \\ z \end{pmatrix} et \vec{B} \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} donc \vec{A} - \vec{B} = \vec{w} = (x - x')\vec{i} + (y - y')\vec{j} + (z - z')\vec{k}$$



7.3. Produit d'un vecteur par un scalaire

Le produit d'un vecteur \vec{v} par un scalaire α est le vecteur $\alpha \vec{v}$, ce vecteur a le même support que \vec{v} .

Les deux vecteurs (\vec{v} et $\alpha \vec{v}$) ont le même sens si $\alpha > 0$ et ils sont des supports opposés si $\alpha < 0$.

$$\alpha \vec{v} = \alpha \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \alpha x \vec{i} + \alpha y \vec{j} + \alpha z \vec{k}$$

Remarques: $[\alpha \vec{v}] = |\alpha| |\vec{v}|, \ \alpha(\vec{u} + \vec{v}) = \alpha \vec{u} + \alpha \vec{v}$ et $(\alpha + \beta)\vec{u} = \alpha \vec{u} + \beta \vec{u}$

8. Produits

8.1. Produit scalaire الجداء السلمي

Soit deux vecteurs \vec{A} et \vec{B} faisant entre eux un angle θ , le produit scalaire \vec{A} . $\vec{B} = m$ avec m est un scalaire tel que :

$$\overrightarrow{A}.\overrightarrow{B} = m = |\overrightarrow{A}|.|\overrightarrow{B}|\cos(\overrightarrow{A},\overrightarrow{B})$$

avec
$$(\widehat{\vec{A}, \vec{B}}) = \theta$$

Remarque: les propriétés du produit scalaire sont :

- Le produit scalaire est commutatif $\vec{A} \cdot \vec{B} = \vec{B} \cdot \vec{A}$
- le produit scalaire est non associatif $\overrightarrow{V_1}$. $(\overrightarrow{V_2}.\overrightarrow{V_3})$, n'existe pas, car le résultat serait un vecteur.
- le produit scalaire est distributif.
- $\vec{A} \cdot \vec{B} = 0$ lorsque les deux vecteurs sont perpondiculaires $(\vec{A} \perp \vec{B})$.
- Si $\vec{A} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ et $\vec{B} \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix}$ alors $\vec{A} \cdot \vec{B} = x \cdot x' + y \cdot y' + z \cdot z' = \text{un scalaire}$

الجداء الشعاعي 8.2. Produit vectoriel

Le produit vectoriel de deux vecteurs \overrightarrow{A} et \overrightarrow{B} est un vecteur \overrightarrow{C} et s'écrit par:

$$\vec{C} = \vec{A} \wedge \vec{B}$$

Pour calculer le produit vectoriel de deux vecteurs $\vec{A} \begin{pmatrix} x \\ y \end{pmatrix} et \vec{B} \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix}$ on aura :

$$\vec{A} \wedge \vec{B} = \begin{vmatrix} \vec{\iota} & \vec{j} & \vec{k} \\ x & y & z \\ x' & y' & z' \end{vmatrix} = \vec{\iota} \begin{vmatrix} y \\ y & z' \end{vmatrix} - \vec{j} \begin{vmatrix} x & z \\ x' & z' \end{vmatrix} + \vec{k} \begin{vmatrix} x & y \\ x' & y' \end{vmatrix} = \vec{C} = \text{un vecteur}$$

$$\vec{A} \wedge \vec{B} = \vec{\iota}(yz' - zy') - \vec{\jmath}(xz' - zx') + \vec{k}(xy' - yx') = \vec{C}$$

Donc le module du produit vectoriel peut être donné par une autre méthode tel que :

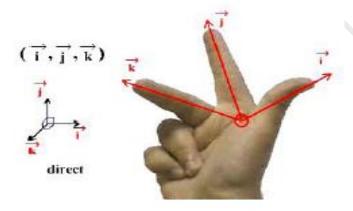
$$W = \sqrt{(yz' - zy')^2 + (xz' - zx')^2 + (xy' - yx')^2}$$

Les caractéristiques du vecteur \vec{C} :

Le support : \vec{C} est perpondiculaire au plan formé par les deux vecteurs \vec{A} et \vec{B} .

Le sens : les trois vecteurs \vec{A} , \vec{B} et \vec{C} forment un trièdre direct.

Le sens est donné par la règle des trois doigts de la main droite.



Le module : $|\vec{C}| = |\vec{A}| \cdot |\vec{B}| \sin(\vec{A}, \vec{B})$

Le module du produit vectoriel correspond à l'aire (la surface مساحة) du parallélogramme (متوازي الاضلاع) formé par les deux vecteurs \vec{A} et \vec{B} .

Exemple:

Dans une base orthonormée des coordonnées cartésiennes $(\vec{i}, \vec{j}, \vec{k})$:

$$\vec{i} \wedge \vec{j} = \vec{k}$$
, $\vec{j} \wedge \vec{k} = \vec{i}$ et $\vec{k} \wedge \vec{i} = \vec{j}$ Par contre $\vec{i} \wedge \vec{k} = -\vec{j}$

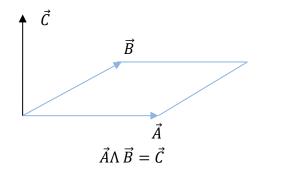
Remarques: Les propriétés du produit vectoriel sont :

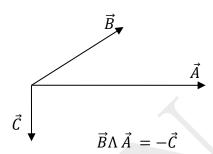
- Le produit vectoriel n'est pas commutatif (Anticommutatif).
- Non associatif: $\overrightarrow{V_1} \wedge (\overrightarrow{V_2} \wedge \overrightarrow{V_3}) \neq (\overrightarrow{V_1} \wedge \overrightarrow{V_2}) \wedge \overrightarrow{V_3}$.
- Distributif par rapport à la somme vectorielle: $\vec{A}\Lambda \left(\vec{B_1} + \vec{B_2}\right) = \vec{A}\Lambda \vec{B_1} + \vec{A}\Lambda \vec{B_2}$

Mais:

$$\overrightarrow{V_1} \wedge \left(\overrightarrow{V_2} + \overrightarrow{V_3}\right) \neq \left(\overrightarrow{V_1} \wedge \overrightarrow{V_2}\right) + \left(\overrightarrow{V_1} \wedge \overrightarrow{V_3}\right)$$

• $\vec{A} \wedge \vec{B} = -\vec{B} \wedge \vec{A}$ car $sin(\vec{A}, \vec{B}) = -sin(\vec{B}, \vec{A})$





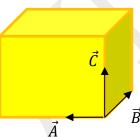
• $\vec{A} \land \vec{B} = \vec{0}$ lorsque les deux vecteurs sont parallèles $(\vec{A} \parallel \vec{B})$

8.3. Produit mixte

On appelle produit mixte de trois vecteurs \vec{A} , \vec{B} et \vec{C} une quantité scalaire \mathbf{m} tel que :

$$m = (\vec{A} \Lambda \vec{B}) \cdot \vec{C}$$

Avec **m** représente le volume du parallélépipède (حجم متوازي المستطيلات) construit par les trois vecteurs :



Remarques : Le produit mixte est commutatif, $(\vec{A} \land \vec{B}) \cdot \vec{C} = \vec{A} \cdot (\vec{B} \land \vec{C}) = (\vec{C} \land \vec{A}) \cdot \vec{B}$

9. Dérivé d'un vecteur

Soit le vecteur $\vec{A} = x\vec{i} + y\vec{j} + z\vec{k}$ qui varie en fonction du temps :

Sa première dérivé par rapport au temps est :

$$\overrightarrow{A'} = \frac{d\overrightarrow{A}}{dt} = \frac{dx}{dt}\overrightarrow{i} + \frac{dy}{dt}\overrightarrow{j} + \frac{dz}{dt}\overrightarrow{k}$$

La deuxième dérivée est :

$$\overrightarrow{A''} = \frac{d^2 \vec{A}}{dt^2} = \frac{d^2 x}{dt^2} \vec{i} + \frac{d^2 y}{dt^2} \vec{j} + \frac{d^2 z}{dt^2} \vec{k}$$

Remarques:

- Dérivée d'un produit scalaire $(\vec{A}.\vec{B})' = \vec{A'}.\vec{B} + \vec{A}.\vec{B}$
- Si \vec{B} est constant $(\vec{A}.\vec{B})' = \vec{A'}.\vec{B}$
- $(\vec{A}^2)' = 0 \ car (\vec{A}^2)' = 2\vec{A'} \cdot \vec{A} = 0$
- Le vecteur dérivé est perpendiculaire au vecteur.
- Un vecteur s'écrit $\vec{A} = |\vec{A}|\vec{u} = A\vec{u}$, si \vec{u} est un vecteur variable alors $\vec{A}' = A'\vec{u} + A\vec{u}'$

References

- 1. C. J. Papachristou, Hellenic Naval Academy, Introduction to Mechanics of Particles and Systems. (ResearchGat, 2020).
- 2. A.I. Borisenko, I.E. Tarapov, *Vector and Tensor Analysis with Applications* (Dover, 1979).
- 3. M.D. Greenberg, *Advanced Engineering Mathematics*, 2nd Edition (Prentice-Hall, 1998).