Abou Bekr Belkaid University - Tlemcen Faculty of Sciences Department of Mathematics Academic year: 2024 - 2025 Module: Algebra 1 L1 Math+MI

Tutorial sheet $\ensuremath{\text{N}}^\circ 2$: Sets and maps

Exercise 1

(1) Write the following sets in extension:

 $A = \left\{ n \in \mathbb{Z} \setminus -\frac{3}{\sqrt{2}} < n-1 < 2\sqrt{\pi} \right\} \text{ and } B = \left\{ z \in \mathbb{C} : z^4 - 1 = 0 \right\}.$ (2) Write the following sets in comprehension: $C = \left\{ \frac{4}{5}, \frac{6}{7}, \frac{8}{9}, \frac{10}{11}, \frac{12}{13}, \frac{14}{15} \right\} \text{ and } D = \left\{ -1, \frac{1}{2}, -\frac{1}{3}, \frac{1}{4}, -\frac{1}{5}, \frac{1}{6}, -\frac{1}{7}, \dots \right\}.$ (3) Let $E = \{1, 2, 3\} \subset \mathbb{N}.$ Find P(E) the set of power of E. (4) Let A, B and C be parts of P(E) given by : $A = \left\{ X \in P(E) : 1 \in X \right\}, B = \left\{ X \in P(E) : 2 \notin X \right\}, C = \left\{ X \in P(E) : 1 \notin X \text{ and } 3 \in X \right\}.$ - Give the sets A, B and C in extension. (5) Find $A \cap B, A \setminus B, B \cup C, \text{ and } \overline{c} = C_{P(E)}(C), \text{ the complement of } C \text{ relative to } P(E).$

Exercise 2

For $n \in \mathbb{N}^*$, let's pose $A_n = \left[\frac{1}{n+1}, \frac{1}{n}\right]$. (*i*) Show that the family of sets $\{A_n, n \in \mathbb{N}^*\}$ is a recovery of the interval]0, 1]. (*ii*) Deduce that $\{A_n, n \in \mathbb{N}^*\}$ is a partition of]0, 1].

Exercise 3

Let A, B, and C be three parts of a set E. Show that :

(1)
$$\left[A \cap B = A \cap C \text{ and } A \cup B = A \cup C\right] \Rightarrow B = C$$

- (2) $A \cap B = A \cup B \Rightarrow A = B$, using :
- (i) Direct proof.
- (*ii*) The contrapositive.
- (3) (Supp) $A \cup B = A \cap C \Leftrightarrow B \subset A \subset C$.

Exercise 4 (*Homework*)

We consider the two sets *E* and *F* defined by :

$$E = \left\{ x \in \mathbb{R} : \left| 1 - \frac{x}{2} \right| \le 1 \right\} \text{ and } F = \left\{ x \in \mathbb{R} : \exists t \in \mathbb{R}^+, x = t + 2 \right\}.$$

- (1) Write E as an interval [a, b].
- (2) Show that $F = [2, +\infty[.$
- (3) Find $E \cap F$, $E \cup F$, $E \setminus F$, $F \setminus E$, $F \triangle E$ et $C_{\mathbb{R}^+}(E)$, the complement of E relative to \mathbb{R}^+ .

Exercise 5

Let D_{24} denote the set of divisors of 24. Consider the two sets *E* and *F* defined by : $E = \{n \in D_{24} : n \text{ is even}\}$ and $F = \{n \in \mathbb{N} \setminus n \text{ is prime and } n < 9\} \cup \{1, 10\}.$ Let $f: E \to F$ be a map defined by its graph $G = \{(2,3), (4,5), (6,1), (8,5), (12,7), (24,10)\}.$ (1) Check that *f* is indeed a map.

(2) Is *f* injective (one-to-one) ? surjective (onto)?

(3) Determine $f(6), f(\{6\}), f(\{n \in E \setminus n \text{ divides } 8\})$ and f(E).

(4) Determine $f^{-1}(1), f^{-1}(\{1\}), f^{-1}(\{5\}), f^{-1}(\{n \in \mathbb{N} \mid n \text{ is prime and } n < 9\})$ and $f^{-1}(F)$.

Exercise 6

Let's note by $J =]1, +\infty[$. Let f and $g : J \rightarrow J$ be two maps defined by :

$$\forall x \in J, f(x) = 1 + \frac{2}{\sqrt{x} - 1} \text{ and } g(x) = \left(\frac{\sqrt{x} + 1}{\sqrt{x} - 1}\right)^2.$$

(1) Determine $f([2,4[) \text{ and } g^{-1}(\{9\}))$.

(2) Show that f is a bijection from J into J and determine its inverse map.

(3) Check that : $\forall x \in J, g(x) = (f(x))^2$.

(4) Deduce that g is a bijection from J into J and determine its inverse map.

Exercise 7

Let's note by $U = [0, +\infty[\times]0, +\infty[$ and Let $f: U \rightarrow U$ be a map defined by :

$$f(x,y) = \left(xy, \frac{y}{x}\right)$$

(1) Show that *f* is injective (one-to-one)? (We can pose $t = \frac{y}{x}$).

(2) Is *f* surjective (onto)? If yes, determine f^{-1} .

Exercise 8 (Homework)

Let f and g be two maps defined by :

$$f: \mathbb{R} \setminus \{3\} \to \mathbb{R} / \{4\} \text{ and } g: \mathbb{R} / \{4\} \to \mathbb{R} \setminus \{3\}$$
$$x \mapsto \frac{4x+1}{x-3} \qquad x \mapsto \frac{3x+1}{x-4}$$

(1) Show that $\forall y \in \mathbb{R} \setminus \{4\}, \frac{3y+1}{y-4} \neq 3$.

(2) Find for $x \in \mathbb{R} \setminus \{1, 3\}$ the image of 3x by f and for $x \in \mathbb{R} \setminus \{-2, 2, 4\}$ the image of x^2 by g.

(3) Determine the preimages y = 1 by f and by g.

- (4) Determine $f \circ g$ and $g \circ f$.
- (5) Show that f is injective (one-to-one).

(6) ls f surjective (onto)?

(7) Is f bijective? If yes, determine f^{-1} .

SUPPLEMENTARY EXERCISES

Exercise 1

Let $A = \{(x, y) \in \mathbb{R}^2 \setminus x^2 + y^2 \le 1\}$ be a set.

(1) Do the pairs (1,0) and (0,1) belong to *A*?

(2) Show that A can not be the cartesian product of two parts of \mathbb{R} .

Indication : By contradiction and notice that $(1,1) \notin A$.

Exercise 2

Consider the following two sets :

$$A = \left\{ x \in \mathbb{R} \setminus \exists t \in [0, 1] : x = t + 2 \right\} \text{ and}$$
$$B = \left\{ x \in \mathbb{R} \setminus \left| x - \frac{5}{2} \right| \le \frac{1}{2} \right\}.$$

(1) Write the set *B* as an interval [a, b].

(2) Show that A = B.

Exercise 3

Let A, B, and C be three parts of a set E. Show that :

- (1) $(A \setminus B) \setminus C = A \setminus (B \cup C)$
- (2) $C_E(A \cap B) = C_E(A) \cup C_E(B)$
- $(3) A \triangle B = A \cap B \iff A = B = \emptyset$

Exercise 4

(1) Consider the following sets: $A = \left\{ \frac{5n+8}{8n-1}, n \in \mathbb{N} \right\} \text{ and } B = \left\{ \frac{2n+4}{2n-1}, n \in \mathbb{N} \right\}.$ (*i*) Does $\frac{17}{3} \in A$? $\frac{18}{15} \in A$? $\frac{43}{25} \in B$? $\frac{42}{37} \in B$? (*ii*) Show that $\frac{6}{5}$ is a common element between sets A and B. (2) Let $C = \left\{ \frac{\pi}{4} + \frac{2k\pi}{5}, k \in \mathbb{Z} \right\}$ and $D = \left\{ \frac{\pi}{2} + \frac{2k\pi}{5}, k \in \mathbb{Z} \right\}$, be two sets. - Show that $A \cap B = \emptyset$.

Exercise 5

Consider the two parts of \mathbb{R}^2 , E = [0,1] and F = [0,2]

- (1) Draw $E \times F$ and $E \times E$.
- (2) Let $f: E \to F$ and $g: F \to E$ be two maps.

 $x \mapsto 2 - x$ $x \mapsto (x - 1)^2$

- (3) Specify $g \circ f$ and $f \circ g$. Do we have $g \circ f = f \circ g$ and $g \circ f = g$?
- (4) Determine $f^{-1}(\{0\})$ and $g^{-1}(\left[0, \frac{1}{2}\right])$
- (5) Show that : $g \circ f$ is bijective and specify $(g \circ f)^{-1}$.

Exercise 6

Let $f: \mathbb{R} \to \mathbb{R}$ be a map defined by : $f(x) = \frac{2x}{1+x^2}$.

- (1) Determine f(2) and $f\left(\frac{1}{2}\right)$. f is it injective (one-to-one)?
- (2) Solve in \mathbb{R} : f(x) = 2. f is it surjective (onto)? Show that $f(\mathbb{R}) = [-1, 1]$.

(3) Show that the application g defined on [-1,1] in [-1,1] by: f(x) = g(x) is bijective and determine its inverse g^{-1} .

Exercise 7

Let $f : \mathbb{R} \to \mathbb{R}^+$ be a map defined by :

$$\forall x \in \mathbb{R}, f(x) = \frac{1}{1 + \sqrt{4 + x^2}}.$$

(1) Determine $f({x \in \mathbb{R} \setminus x^2 = 4}), f(\mathbb{R}^+)$ and $f^{-1}({y \in \mathbb{R}^+ \setminus |y| = 1}).$

(2) Is f injective? surjective? bijective?

(3) Let $g = f_{\mathbb{R}^+} : \mathbb{R}^+ \to J$ where $J = f(\mathbb{R}^+)$, the restriction of f on \mathbb{R}^+ .

- Show that g is bijective and determine g^{-1} .

Exercise 8

We define the maps $f : \mathbb{R} \to \mathbb{R}^+$ and $g : \mathbb{R}^+ \to [2, +\infty[$ by :

$$\forall x \in \mathbb{R}, f(x) = 1 + \sqrt{1 + x + x^2}$$

$$\forall x \in \mathbb{R}^+, g(x) = 1 + \sqrt{1 + x^2}$$

(1) Find
$$f({x \in \mathbb{R} \setminus x^2 + x - \alpha(\alpha + 1) = 0}, \text{ where } \alpha \in \mathbb{R}^{+*})$$
 and $f^{-1}({y \in \mathbb{R} + \langle 2|y| = 1})$

(2) Is *f* injective? surjective? bijective?

(3) Show that *g* is bijective and determine g^{-1} .

Exercice 9

Let $h : \mathbb{R}^+ \to \left\lceil \frac{1}{4}, +\infty \right\rceil$ be a map defined by $: \forall x \in \mathbb{R}^+, h(x) = x + \sqrt{x} + \frac{1}{4}$.

(1) Check that : $\forall x \in \mathbb{R}^+, h(x) = \left(\sqrt{x} + \frac{1}{2}\right)^2$.

(2) Write the application *h* as the composite of two maps *f* and *g* : $h = g \circ f$.

(3) Show that f is a bijection and determine its inverse map.

(4) Show that g is a bijection and determine its inverse map.

(5) Deduce that *h* is a bijection of \mathbb{R}^+ in $\left\lceil \frac{1}{4}, +\infty \right\rceil$, and determine its inverse map.

Exercise 10

Let $f: \mathbb{R}^* \to \mathbb{R}$ and $g: \mathbb{R}^{*+} \to \mathbb{R} \setminus \{1\}$ be two maps.

$$x \mapsto 1 - \frac{1}{x^2}$$
 $x \mapsto 1 - \frac{1}{x^2}$

(1) Determine $f(\{-1,1\})$ and $f^{-1}(\{1\})$.

- (2) Is f injective? Surjective?
- (3) Show that the map g is bijective and determine g^{-1} .

Exercise 11

(*I*) Let $f : \mathbb{R} \to \mathbb{R}$ be a map defined by $: f(x) = \frac{1}{\sqrt{1+x^2}}$.

(1) Determine
$$f(\{x \in \mathbb{R} \mid |x| = 1\})$$
 and $f^{-1}(\{y \in \mathbb{R} \mid y^3 = 8\})$.

- (2) Is f injective (one-to-one)? surjective (onto)? bijective?
- (3) Determine $f\left(\left[1,\sqrt{3}\right]\right), f\left(\left]-\sqrt{3},-1\right]\right), f\left(\left[-1,2\sqrt{2}\right], f(\mathbb{R}^+), f^{-1}(]0,1]\right) \text{ and } f^{-1}\left(\left[\frac{1}{2},1\right]\right).$
- (*II*) Let $g = f_{\mathbb{R}^+} : \mathbb{R}^+ \to J$ where $J = f(\mathbb{R}^+)$. (g is the restriction of f on \mathbb{R}^+).
- (1) Show that g is bijective and determine g^{-1} .
- (2) Determine $g^{-1}\left(\frac{1}{2}\right)$ by two methods.
- (3) Calculate $g \circ g^{-1}(y)$ for $y \in J$ and $g^{-1} \circ g(x)$ for $x \in \mathbb{R}^+$.