Abou Bekr Belkaid University - Tlemcen Faculty of Sciences Department of Mathematics Academic year: 2024 - 2025 Module: Algebra 1 L1 Math+MI

Tutorial sheet $\ensuremath{\text{N}}^\circ3$: Binary relations

Exercise 1

We define in \mathbb{R}^* the relation *R* by :

$$\forall x, y \in \mathbb{R}^*, x R y \iff x^2 - \frac{1}{x^2} = y^2 - \frac{1}{y^2}$$

(1)Show that R is an equivalence relation.

(2) Determine the equivalence class of $a \in \mathbb{R}^*$.

Exercise 2

In \mathbb{R} we define the relations \mathfrak{R}_1 and \mathfrak{R}_2 by :

 $\forall x, y \in \mathbb{R}, x \, \Re_1 y \iff x - y \in \mathbb{N}$ $\forall x, y \in \mathbb{R}, x \, \Re_2 y \iff x - y \in \mathbb{Z}$

(1) Show that \Re_1 is an order relation.

(2) Is this order total?

(3) Show that \Re_2 is not an order relation, but it is an equivalence relation.

(4) Determine the equivalence classes of 0, 1 and $a \in \mathbb{Z} \subset \mathbb{R}$.

Exercise 3

Let \mathfrak{R} be the relation defined on \mathbb{N}^* by :

 $\forall a, b \in \mathbb{N}^*, a \Re b \Leftrightarrow \exists n \in \mathbb{N} \text{ such } : a^n = b.$

(1) Show that \Re is an order relation on \mathbb{N}^* .

(2) Is this order total?

(3) Let the set $A = \{1, 4, 8\}$. Determine if they exist, max (A) and min (A) in the sense of this order.

Supplementary exercises

Exercise 1

(1) Say if the following relations are reflexive, symmetric, antisymmetric, transitive :

(*i*) $E = \mathbb{Z}$ and $x \Re y \Leftrightarrow x = -y$

(*ii*) $E = \mathbb{R}$ and $x\Re y \Leftrightarrow \cos^2 x + \sin^2 y = 1$

(*iii*) $E = \mathbb{N}$ and $x \Re y \Leftrightarrow \exists p, q \in \mathbb{N}^*, y = px^q$.

(2) Which of the above examples are order relations and equivalence relations?

Exercise 2

(1) Let \Re be a reflexive binary relation defined on a set *E* such that :

 $\forall x, y, z \in E : x \Re y \text{ and } y \Re x \Rightarrow z \Re x.$

Such a relation is called circular.

- Verify that ${\mathfrak R}$ is an equivalence relation.

(2) Let *S* be a reflexive and transitive relation defined in a set *E* and \triangle another relation defined by :

 $\forall x, y \in E, x \triangle y \Leftrightarrow xSy \land ySx.$

- Check that \triangle is an equivalence relation.

Exercise 3

We define in \mathbb{R}^* the relation \mathfrak{R} by :

$$\forall x, y \in \mathbb{R}^*, \, x \Re y \Leftrightarrow \frac{x}{y} > 0.$$

(1) Show that \Re is an equivalence relation.

(2) Determine cl(1), cl(-2) and cl(a) where $a \in \mathbb{R}^*$? Deduce quotient set \mathbb{R}^*/\Re .

Exercise 4

In \mathbb{R} we define the relation \mathfrak{R} by :

$$\forall x, y \in \mathbb{R}, x \Re y \Leftrightarrow x \equiv y[2\pi] \Leftrightarrow \exists n \in \mathbb{Z} : x - y = 2\pi n.$$

(1) Show that \Re is an equivalence relation.

(2) Determine cl(0), $cl(\pi)$ et $cl(2\pi)$.

Exercise 5

In \mathbb{R}^2 we define the relation \mathfrak{R} by :

$$\forall (x,y), (x',y') \in \mathbb{R}^2, (x,y)\Re(x',y') \Leftrightarrow x < x' \text{ or } (x = x' \text{ and } y \le y')$$

(1) Show that \Re is an order relation.

(2) Is this order total?

Exercise 6

Let \mathfrak{R} be the binary relation defined on $\mathbb{Z} \times \mathbb{N}^*$ by :

$$\forall (a,b), (a',b') \in \mathbb{Z} \times \mathbb{N}^*, (a,b) \Re(a',b') \Leftrightarrow ab' = a'b.$$

(1) Show that \Re is an equivalence relation.

(2) Determine cl(1,2) and cl(-1,2).

Exercise 7

We define in \mathbb{R}^2 the relation \leq by :

$$\forall (x,y), (x',y') \in \mathbb{R}^2, (x,y) \leq (x',y') \Leftrightarrow x \leq x' \text{ and } y \leq y'.$$

- (1) Show that it is an order relation. Is this order total?
- (2) Dztermine sup(A), inf(A), max(A) and min(A) if they exist, where

$$A = \{(1,2), (3,1)\}$$

Exercise 8

Let *S* be the relation defined on \mathbb{R} by :

$$\forall x, y \in \mathbb{R}, x S y \Leftrightarrow x^3 - y^3 = x - y$$

(1) Show that S is an equivalence relation.

(2) Discuss according to the value of $m \in \mathbb{R}$, the number of elements of cl(m).