Methods of proof

Contents

- Direct proof
- ② Disjunction of cases
- Contraposition
- Contradiction
- By giving a counter example
- Successive equivalences
- Induction.

Introduction

- In mathematics, proving statements is fundamental.
- Different methods are used to establish the truth of mathematical statements.
- Here are some common methods of proofs :

Direct proof

- A direct proof demonstrates the truth of a proposition by a straightforward chain of logical deductions.
- We want to show that the proposition $\ll P \Longrightarrow Q$ » is true.
- We assume that P is true and we show that then Q is true.
- This is the method you are most familiar with.

- Let *n* be a natural number.
- Show that : n is even $\implies n^2$ is even.
- n is even $\Longrightarrow \exists k \in \mathbb{N}$ such that n = 2k
- We have $n^2 = (2k)^2 = 2(2k^2) = 2l$ with $l = 2k^2 \in \mathbb{N}$.
- And consequently n^2 is even.

- Show that : $x, y \in]-1, 1[\Longrightarrow \frac{x+y}{1+xy} \in]-1, 1[$.
- We have

$$lpha \in \left]-1,1\right[\Longleftrightarrow -1 < lpha < 1 \Longleftrightarrow |lpha| < 1 \Longleftrightarrow lpha^2 < 1 \Longleftrightarrow lpha^2 - 1 < 0$$

• Let $x, y \in]-1, 1[$.

$$\left(\frac{x+y}{1+xy}\right)^{2} - 1 = \frac{(x+y)^{2} - (1+xy)^{2}}{(1+xy)^{2}} = \frac{x^{2} + y^{2} - 1 - x^{2}y^{2}}{(1+xy)^{2}}$$
$$= \frac{x^{2} - 1 + y^{2}(1-x^{2})}{(1+xy)^{2}} = \frac{(x^{2} - 1)(1-y^{2})}{(1+xy)^{2}} < 0$$

- because $x, y \in]-1, 1[$, and $x^2 < 1, y^2 < 1$
- then $\left(\frac{x+y}{1+xy}\right)^2 1 < 0 \Longrightarrow \left(\frac{x+y}{1+xy}\right)^2 < 1 \Longrightarrow \left|\frac{x+y}{1+xy}\right| < 1$
- Finally: $\left(\frac{x+y}{1+xy}\right)^2 1 < 0 \Longrightarrow \frac{x+y}{1+xy} \in]-1,1[$.

()

Disjunction of cases

- If we want to check a proposition P(x) for all x in a set E,
- we show the proposition for the x in a part A of E,
- then for the x not belonging to A.
- This is the method of disjunction of cases or case by case.

• Let $n \in \mathbb{N}$. Show that : n(n+1)(n+2) is even.

First case:
$$n$$
 is even $\exists k \in \mathbb{N}$ such that $n = 2k$
 $n(n+1)(n+2) = 2k(2k+1)(2k+2) = 2l$ with $l = k(2k+1)(2k+2) \in \mathbb{N}$

• therefore n(n+1)(n+2) is even.

Second case: n is odd
$$\exists k \in \mathbb{N}$$
 such that $n = 2k + 1$
 $n(n+1)(n+2) = (2k+1)(2k+2)(2k+3)$
 $= 2(2k+1)(k+1)(2k+3)$
 $= 2l \text{ with } l = (2k+1)(k+1)(2k+3) \in \mathbb{N}.$

- So, n(n+1)(n+2) is even.
- Conclusion : $\forall n \in \mathbb{N}$, n(n+1)(n+2) is even.

• Show that :

$$\forall x \in \mathbb{R}, |x-2| \le x^2 - 3x + 3$$

• We have $|x - 2| = \begin{cases} x - 2 & \text{if } x \ge 2\\ 2 - x & \text{if } x < 2 \end{cases}$

If
$$x \ge 2$$
, $|x-2| = x-2 \le x^2 - 3x + 3$

then
$$x^2 - 4x + 5 \ge 0$$
 it's true because $\triangle = -4 < 0$

If
$$x < 2$$
, $|x - 2| = 2 - x \le x^2 - 3x + 3$

then
$$x^2 - 2x + 1 = (x - 1)^2 \ge 0$$
 it is true.

• Conclusion :

$$\forall x \in \mathbb{R}, |x-2| \le x^2 - 3x + 3$$

∢ロ♪ ∢御♪ ∢≧♪ ∢≧♪ \\ 暑 ・ かぬぐ

Contraposition

- A proof by contrapositive proves an implication $P \Longrightarrow Q$ by proving the equivalent contrapositive statement $\overline{Q} \Longrightarrow \overline{P}$.
- Proof by contraposition is based on the following equivalence

$$(P \Longrightarrow Q) \Longleftrightarrow (\overline{Q} \Longrightarrow \overline{P})$$

- So, if we want to show the proposition $P \Longrightarrow Q$
- We actually show that if \overline{Q} is true then \overline{P} is true.

(

- Let $n \in \mathbb{N}$.
- Show that : n^2 is even $\implies n$ is even.
- n is odd $\Longrightarrow \exists k \in \mathbb{N}$ shuch that n = 2k + 1;
- We have

$$n^{2} = (2k+1)^{2} = 4k^{2} + 4k + 1 = 2(2k^{2} + 2k) + 1 = 2l + 1$$

- with $I = 2k^2 + 2k \in \mathbb{N}$.
- And consequently n^2 is odd.
- Conclusion : n^2 is even $\implies n$ is even.

- Let $x, y \in \mathbb{R}$.
- Show that :

$$x \neq y \text{ and } xy \neq 1 \Longrightarrow \frac{x}{x^2 + x + 1} \neq \frac{y}{y^2 + y + 1}$$

•
$$\frac{x}{x^2 + x + 1} = \frac{y}{y^2 + y + 1} \Longrightarrow x(y^2 + y + 1) = y(x^2 + x + 1)$$

•

Contradiction

- A proof by contradiction assumes that the statement to be proven is false and then shows that this assumption leads to a contradiction.
- Let R be a proposition. We know that $R \vee \overline{R}$ is true.
- To show that R is true, we assume that R is false, that is to say \overline{R} is true and we show that we obtain a contradiction.
- If R is an implication, $R \cong P \Longrightarrow Q$
- We have $\overline{P \Longrightarrow Q} \Longleftrightarrow P \wedge \overline{Q}$
- Proof by contradiction to show that $P \Longrightarrow Q$ is based on the following principle :
- we assume both that P is true and that Q is false and we look for a contradiction.
- So if P is true then Q must be true and therefore $P \Longrightarrow Q$ is true.

- Let show by contradiction that $\sqrt{2}$ is irrational (not rational):
- We assume that $\sqrt{2} \in \mathbb{Q}$.
- $\sqrt{2} \in \mathbb{Q} \Longrightarrow \sqrt{2} = \frac{a}{b}$ with a and b are natural numbers that are prime to each other. (the fraction $\frac{a}{b}$ is irreducible).

- Let a, b > 0.
- Show that :

$$\frac{a}{1+b} = \frac{b}{1+a} \implies a = b$$

• Assume that $\frac{a}{1+b} = \frac{b}{1+a}$ with $a \neq b$

$$\frac{a}{1+b} = \frac{b}{1+a} \Longrightarrow a(1+b) = b(1+a)$$

$$\Longrightarrow$$