# 1- Logic and proofs

- Propositional logic
- Logical connectives
- Mathematical quantifiers
- Methods of proof

2 / 30

- Mathematical logic allows the study of mathematics as a language.
- Mathematical logic is essential for the statement of a proposition and the study its truth value. So, this is the basis of all mathematical reasonning.
- Logic and proofs form the foundation of mathematics.
- In this course, we will explore the basic concepts of logic, the structure of mathematical proofs, and various proof techniques.

# 1-1 Propositional logic

• Propositional logic deals with propositions and their logical relationships.

## Definition

- A proposition (statement) is a mathematically precise statement that is either true or false, but not both.
- We often note a proposition by letters P, Q, R, ...
- If a proposition P is true, it is assigned the value 1 or T (true), and if it is false, it is assigned the value 0 or F (false).

• 
$$P: \begin{cases} \text{true} \longrightarrow 1 \text{ or } T\\ \text{false} \longrightarrow 0 \text{ or } F \end{cases}$$
  
• Truth table  $\boxed{\begin{array}{c}P\\1\\0\end{array}} \text{ or } \boxed{\begin{array}{c}P\\T\\F\end{array}}$ 

4 / 30

## Principle of non-contradiction

A proposition can not be true and false at the same time.

## Principle of excluded third party

A proposition is either true or false but not a third possibility **Examples** 

- 374 is divisible by 11 (Proposition-true) : 374 = 34.11
- The natural number 4 is less than (<) the real number  $\pi$  (Proposition-false) :  $\pi \simeq$  3, 14.
- $1 + \sqrt{2}$  is not a proposition, because this expression doest not have a true value.
- x + 1 > 5 is not a proposition. The true value of this statement relies on what the variable x is assigned.
- It gets a logical statement (proposition) if we choose a value for x.(It is called a propositional function or predicate).

# 1-1 Propositional logic

## Definition

Wen a proposition depnds on a variable or sereval variables, it is called a propositional function or predicate.

## Examples

•  $P(x): e^x \ge 1.$ 

The predicate P(x) is true if  $x \ge 0$  and it is false if x < 0.

Q(x, y): For all real number x, there exists a real number y such that y > x.

This predicate is true, because for any real number x, we can choose y = x + 1. So that y = x + 1 > x.

R(x, y): There exists a real number x such that, for all real number y, we have y > x.

This predicate is not true, because is not possible to find a real number x such that all other real numbers y are strictly greater than x. There is no smallest real number, because real numbers extend toward negative

• We are particulary interested in combining propositions by operators or connectors ( connectives).

## Definition

A coumpound proposition is a statement obtained by combining propositions with logical connevtives (operators).

# 1-2-1 Negation

The negation of a proposition P is denoted by not(P) or  $\exists P$  or  $\overline{P}$ .

• **not**(*P*) is true if *P* is false and alse if *P* is true.

• Truth table  $\begin{array}{|c|c|c|} \hline P & \overline{P} \\ \hline 1 & 0 \\ \hline 0 & 1 \end{array}$  or  $\begin{array}{|c|c|} \hline P & \overline{P} \\ \hline T & F \\ \hline F & T \end{array}$ 

Remark

not(not(P)) is P ((P) is P. That is the negation of the negation of the proposition P is P.

#### Examples

- P: |x| < 1, its negation is  $\overline{P}: |x| \ge 1$ .
- Q: 4 is even.  $\overline{Q}: 4$  is not even. that is to say : 4 is odd.
- R: All students are in the lecture hall.
   R: Not all students are in the lecture hall.
   That is to say R: There is a student that is not in the lecture hall.
- *S* : 3 divides 15 and divides 81.
- $\overline{S}$ : 3 does not divide 15 **or** does not divide 81.
  - T : If a natural number n is a multiple of 4 then it is even.
- $\overline{T}$ : A natural number *n* is a multiple of 4 and it is odd.

## 1-2-2 Equivalence $\iff$

- P ⇐⇒ Q is the proposition " P is equivalent to Q ", or " P if and only if Q ".
- $P \iff Q$  is true when P and Q are both true or both false.



• Two propositions are equivalent if they have identical truth tables.

#### Examples

- For a, b two real numbers,  $(a.b = 0) \iff (a = 0 \text{ or } b = 0)$ .
- For a natural integer n,  $(n \text{ is even}) \iff (n^2 \text{ is even})$ .
- For real numbers a, b and c with  $c \neq 0$ , (The equation  $ax^2 + bx + c = 0$  admits real solutions)  $\iff$  (its discriminant  $\triangle = b^2 - 4ac \ge 0$ ).

# 1-2-3 Conjunction $\wedge$ " and "

 P ∧ Q is the proposition " P and Q ". This time for P ∧ Q to be true, we need both P and Q to be true ( false otherwise).

The conjunction of two propositions is false if at least one of these propositions is false or both are false.







#### Remark

•  $P \wedge \overline{P}$  is false. (Principle of non-contradiction)



#### Examples

• P: 3 is prime, Q: 3 divides 12

 $P \wedge Q$ : (3 is prime) and (3 divides 12). This proposition is true.

- P: n is an even natural number, Q: n is an odd natural number.
- $P \wedge Q$ : *n* is an even **and** odd natural number. This proposition is false.
  - $\overline{P}$  : *n* is an odd natural number. That is *Q*.

 $P \land Q \iff P \land \overline{P}$ , it is false.

- x > -1 and x < 1 means |x| < 1.
- $P \land Q : x \leq 3$  and  $x \geq 1$
- If x = 2 then  $P \wedge Q$  is true.
- If x = 5 then  $P \wedge Q$  is false.

## 1-2-4 Disjunction $\vee$ " or "

- $P \lor Q$  is the proposition " P or Q ".
- $P \lor Q$  is false when both P and Q are false and is true otherwise.
  - The disjunction of two propositions is true if at least one of these propositions is true.



#### Remark

•  $P \lor \overline{P}$  is true. (Principle of excluded third party)

A B M A B M

#### Examples

• P:2 is not prime, Q:2 divides 5.

 $P \lor Q$ : (2 is not prime) or (2 divides 5). This proposition is false.

• P: n is an even natural number, Q: n is an odd natural number.

13 / 30

 $P \lor Q$ : *n* is an even **or** odd natural number. This proposition is true.

•  $\overline{P}$ : *n* is an odd natural number. That is *Q*.

 $P \lor Q \iff P \lor \overline{P}$ , it is true.

- x < -1 or x > 1 means |x| > 1.
- $P \lor Q : x \le 2$  or  $x \ge 5$
- If x = 1 then  $P \lor Q$  is true.
- If x = 3 then  $P \lor Q$  is false.

#### Remark Exclusive or " XOR " $\oplus$

• In everyday language, there is another " or " (exclusive).

 $P \oplus Q$  is the proposition " P or Q ".

• The statement  $P \oplus Q$  is true if and only if exactly one of the statements is true.

 $P \oplus Q$  is true if **only one** of these propositions is true and false if both are false or true simultaneously.

| • Truth table | Р | Q | $P\oplus Q$ | or | Ρ | Q | $P \oplus Q$ |
|---------------|---|---|-------------|----|---|---|--------------|
|               | 1 | 1 | 0           |    | Τ | Т | F            |
|               | 1 | 0 | 1           |    | Т | F | Т            |
|               | 0 | 1 | 1           |    | F | Т | Т            |
|               | 0 | 0 | 0           |    | F | F | F            |

#### Example

The student chooses math **or** computer science and not both.

# **De Morgan's laws : Negation of** $\land$ and $\lor$ $\overline{P \land Q} \iff \overline{P} \lor \overline{Q}$ and $\overline{P \lor Q} \iff \overline{P} \land \overline{Q}$

#### Proof by truth table

| Ρ | Q | P | $\overline{Q}$ | $P \wedge Q$ | $\overline{P \wedge Q}$ | $\overline{P} \vee \overline{Q}$ | $P \lor Q$ | $\overline{P \lor Q}$ | $\overline{P} \wedge \overline{Q}$ |
|---|---|---|----------------|--------------|-------------------------|----------------------------------|------------|-----------------------|------------------------------------|
| 1 | 1 | 0 | 0              | 1            | 0                       | 0                                | 1          | 0                     | 0                                  |
| 1 | 0 | 0 | 1              | 0            | 1                       | 1                                | 1          | 0                     | 0                                  |
| 0 | 1 | 1 | 0              | 0            | 1                       | 1                                | 1          | 0                     | 0                                  |
| 0 | 0 | 1 | 1              | 0            | 1                       | 1                                | 0          | 1                     | 1                                  |

## Definition Tautology-Antilogy(contradiction)

- A proposition that is always true is called a tautology.
- A proposition that is always false is called an antilogy or a contradiction.

## Examples

- $P \vee \overline{P}$  is a tautology.
- $P \wedge \overline{P}$  is an antilogy or a contradiction.

## 1-2-5 Implication $\implies$ " If...then... "

- It is an essential connective ( operator ) in mathematics, because it is thanks to it mathematics advances. It ollows us to state news truths.
- P ⇒ Q is the proposition " P implies Q " or " If P then Q ", which is false when P is true and Q is false and true otherwise.
- The mathematical definition of an implication is :

$$[P \Longrightarrow Q] \Longleftrightarrow \left[\overline{P} \lor Q\right]$$

Truth table

| Ρ | Q | $\overline{P}$ | $P \Longrightarrow Q$ | $\overline{P} \lor Q$ |
|---|---|----------------|-----------------------|-----------------------|
| 1 | 1 | 0              | 1                     | 1                     |
| 1 | 0 | 0              | 0                     | 0                     |
| 0 | 1 | 1              | 1                     | 1                     |
| 0 | 0 | 1              | 1                     | 1                     |

- $P \Longrightarrow Q$  and  $\overline{P} \lor Q$  have identical truth tables.
- P is a suffisant condition for Q.
- Q is a necessary condition for P.

- ()

## Examples

- The implication  $(1 = 2 \Longrightarrow 3 = 4)$  is true.
- (Because if we assume that 1 = 2, then by adding 2 to both sides of this equality we obtain 3 = 4)
- $\bullet$  The implication  $[(1=2) \mbox{ and } (4=3)] \Longrightarrow [1+4=2+3]$  is true.
- (Because if a = b and c = d then a + c = b + d)
- $0 \le x \le 100 \Longrightarrow \sqrt{x} \le 10$ . This implication is true (take the square root).
- $\sin x = 0 \implies x = 0$  is false (look for  $x = 2\pi$  for example);

#### Remark

| $[P \Longleftrightarrow Q] \Longleftrightarrow [P \Longrightarrow Q] \land [Q \Longrightarrow P]$ |   |                       |                       |                                                     |                           |  |
|---------------------------------------------------------------------------------------------------|---|-----------------------|-----------------------|-----------------------------------------------------|---------------------------|--|
| Ρ                                                                                                 | Q | $P \Longrightarrow Q$ | $Q \Longrightarrow P$ | $[P \Longrightarrow Q] \land [Q \Longrightarrow P]$ | $P \Longleftrightarrow Q$ |  |
| 1                                                                                                 | 1 | 1                     | 1                     | 1                                                   | 1                         |  |
| 1                                                                                                 | 0 | 0                     | 1                     | 0                                                   | 0                         |  |
| 0                                                                                                 | 1 | 1                     | 0                     | 0                                                   | 0                         |  |
| 0                                                                                                 | 0 | 1                     | 1                     | 1                                                   | 1                         |  |

#### Negation of an implication

• We know that 
$$(P \Longrightarrow Q) \iff (\overline{P} \lor Q)$$
 (definition of  $\Longrightarrow$ )

So, 
$$(\overline{P \Longrightarrow Q}) \iff (\overline{\overline{P} \lor Q}) \iff (\overline{(\overline{P})} \land \overline{Q})$$
 (De Morgan's laws).  
• Hence  $\overline{(P \Longrightarrow Q)} \iff (P \land \overline{Q})$ 

#### Examples

• Let *a* and *b* be two real numbers.

• 
$$R: [(a = 0) \text{ or } (b = 0)] \Longrightarrow a.b = 0 \text{ is true}$$

$$\overline{R}: [(a=0) \hspace{0.1 in}$$
 or  $\hspace{0.1 in} (b=0)]$  and  $a.b 
eq 0$  is false.

• 
$$S: a^2 > 0 \Longrightarrow a > 0$$
 is false  $(a = -2: a^2 = 4 > 0)$ .

$$\overline{S}:\left( extsf{a}^{2}>0
ight)$$
 and  $\left( extsf{a}\leq0
ight)$  is true.

•  $T: n \text{ is odd} \implies n^2 \text{ is odd.} (n \text{ is a natural integer}) \text{ is true.}$ 

 $\overline{T}$ : (*n* is odd) and ( $n^2$  is even) is false.

()

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

#### Convese of an implication

• The implication "  $Q \Longrightarrow P$  " is called the converse of "  $P \Longrightarrow Q$  ".

| Р | Q | $P \Longrightarrow Q$ | $Q \Longrightarrow P$ |
|---|---|-----------------------|-----------------------|
| 1 | 1 | 1                     | 1                     |
| 1 | 0 | 0                     | 1                     |
| 0 | 1 | 1                     | 0                     |
| 0 | 0 | 1                     | 1                     |

• 
$$Q \Longrightarrow P$$
 is not equivalent to  $P \Longrightarrow Q$ 

#### Example

• Let x a real number.

• 
$$x > 5 \Longrightarrow x > 1$$
 is true, but

•  $x > 1 \Longrightarrow x > 5$  is false ( for example x = 2)

• 
$$x^2 > 4 \implies x > 2$$
 is false, because for  $x = -3$  we have  $(-3)^2 = 9 > 4$  and  $x = -3 < 2$ 

But,  $x > 2 \Longrightarrow x^2 > 4$  is true.

▲ 臣 ▶ | ▲ 臣 ▶

#### Contrapositive of an implication

• Let P and Q be two propositions.

• " 
$$\overline{Q} \Longrightarrow \overline{P}$$
 " is called the contrapositive of "  $P \Longrightarrow Q$  ".



•  $P \Longrightarrow Q$  is equivalent to its contrapositive.

$$\left(\overline{Q}\Longrightarrow\overline{P}\right)\iff\left(P\Longrightarrow Q\right)$$

#### Examples

• Let a, b be two real numbers and n is a natural integer.

• 
$$[(a = 0 \text{ or } b = 0) \implies (a.b = 0)] \iff$$
  
 $[(a.b \neq 0) \implies (a \neq 0 \text{ and } b \neq 0)]$   
•  $[(n \neq 2 \text{ and } n \text{ is prime}) \implies n \text{ is odd}] \iff$   
 $[n \text{ is even} \implies (n = 2 \text{ or } n \text{ is not prime})]$ 

#### To remember

•  $\overline{P \land Q} \iff \overline{P} \lor \overline{Q}$  (De Morgan's laws). •  $\overline{P \lor Q} \iff \overline{P} \land \overline{Q}$  (De Morgan's laws). •  $(P \Longrightarrow Q) \iff (\overline{P} \lor Q)$  (definition of  $\Longrightarrow$ ) •  $(\overline{P \Longrightarrow Q}) \iff (P \land \overline{Q})$  (negation of  $\Longrightarrow$ ) •  $(\overline{Q} \Longrightarrow \overline{P}) \iff (P \Longrightarrow Q)$  (contrapositive of  $\Longrightarrow$ ) •  $(Q \Longrightarrow P)$  is not equivalent to  $(P \Longrightarrow Q)$  (conserve of  $\Longrightarrow$ ) •  $[P \iff Q] \iff [P \Longrightarrow Q] \land [Q \Longrightarrow P]$ 

イロト イポト イヨト イヨト 二日

**Properties of logical connectives** 

• 
$$\overline{(P)} \iff P, P \land Q \iff Q \land P, P \lor Q \iff Q \lor P$$
  
•  $(P \iff Q) \iff (Q \iff P), P \land P \iff P, P \lor P \iff P$   
•  $(P \land Q) \land R \iff P \land (Q \land R)$   
•  $(P \lor Q) \lor R \iff P \lor (Q \lor R)$   
•  $P \land (Q \lor R) \iff (P \land Q) \lor (P \land R)$   
•  $P \lor (Q \land R) \iff (P \lor Q) \land (P \lor R)$   
•  $\overline{P \land Q} \iff \overline{P} \lor \overline{Q}$   
•  $\overline{P \lor Q} \iff \overline{P} \land \overline{Q}$   
•  $(P \implies Q) \iff (\overline{P} \lor Q)$   
•  $(\overline{P \implies Q}) \iff P \land \overline{Q}$   
•  $(\overline{Q} \implies \overline{P}) \iff (P \implies Q)$   
•  $[P \iff Q] \iff [P \implies Q] \land [Q \implies P]$   
•  $[P \iff Q] \iff [P \implies Q] \land [Q \implies P]$   
•  $[P \iff \overline{P} \text{ is false, } P \land F \text{ is false where } F \text{ is false.}$   
•  $P \lor \overline{P}$  is true,  $P \lor T$  is true where  $T$  is true.

22 / 30

()

• In mathematics, we often use expressions of the form :

" for all ", " for any "," there exists at least ", " there exists a unique ".

- These expressions are called " quantifiers".
- The word quantifier comes from the word quantity.

23 / 30

## Definition

There are two types of quantifiers : Universal quantifier  $\forall$ 

- $\forall x \longrightarrow$  for all x
- $\forall x, P(x)$ : means that the predicate P(x) is true for all possible values of x.

## Existential quantifier $\exists$

- $\exists x \longrightarrow$  there exists x (there exists at least x) or there is x.
- $\exists x, P(x)$ : means **there exists** x where P(x) is true.
- Sometimes, we will use also  $\exists ! x, P(x)$
- it means there exists a unique x where P(x) is true

24 / 30

# 1-3 Mathematical quantifiers

## Negation of quantifiers

- Consider the universal statement  $\forall x, P(x)$
- This asserts that P(x) is true for all values of x.
- Hence, if it is false, then this means that there exists at least x such that P(x) is false.
- Similary, the existential statement  $\exists x, P(x)$ , asserts that there exists at least x where P(x) is true.
- Hence, if it is false, this means that for all values of x, P(x) is false. That is  $\overline{P(x)}$  is true.
- Therefore, we have the following :

$$\begin{array}{ccc} \overline{\forall x, P(x)} & \Longleftrightarrow & \exists x, \overline{P(x)} \\ \overline{\exists x, P(x)} & \Longleftrightarrow & \forall x, \overline{P(x)} \end{array} \end{array}$$

#### Examples

- $\forall x \in \mathbb{R}, x^2 \ge 0$  true
- For all real number x, his square is greater than or equal to zero.
- Negation of this proposition is
- $\exists x \in \mathbb{R}, x^2 < 0$  false
- There exists a real number x, whose his square is less than to zero.
- $\exists ! \ n \in \mathbb{N}$  such that n < 1 true (n = 0)
- There exists a unique natural number *n*, which is less than one.

## Remark 1

- Some statements involve several quantifiers.
- The statement :  $\forall x \in \mathbb{R} \in \exists y \in \mathbb{R}, y > x.$  (true)

means that for all real number x, there exists at least one real number y, which is greater than x.

- This statement is true ( For  $x \in \mathbb{R}$  we can choose y = x + 1 > x).
- The order of the quantifiers is very important.
- The statement :  $\exists y \in \mathbb{R}, \forall x \in \mathbb{R}, y > x.$  (false).
- There does not exist a real number which is greater than all other real numbers.

#### Remark 2

• 
$$\forall x, \exists y, P(x, y) \Leftrightarrow \exists y, \forall x, P(x, y)$$

## is not equivalent to

• 
$$\exists x, \forall y, P(x, y) \Leftrightarrow \forall y, \exists x, P(x, y)$$

#### is not equivalent to

• 
$$\forall x, \forall y, P(x, y) \iff \forall y, \forall x, P(x, y)$$

• 
$$\exists x, \exists y, P(x, y) \iff \exists y, \exists x, P(x, y)$$

• 
$$\overline{\forall x, \exists y, P(x, y)} \iff \exists x, \forall y, \overline{P(x, y)}$$

• 
$$\overline{\exists x, \forall y, P(x, y)} \iff \forall x, \exists y, \overline{P(x, y)}$$

#### Negation of there exists a unique

• Negation of 
$$\exists ! x \in E$$

$$\begin{bmatrix} \exists ! \ x \in E, P(x) \end{bmatrix} \iff \\ \begin{bmatrix} \exists x \in E, P(x) \end{bmatrix} \text{ and } \begin{bmatrix} \forall x, x' \in E, (P(x) \text{ and } P(x') \Longrightarrow x = x') \end{bmatrix} \\ \hline Existence \\ uniqueness \\ \end{bmatrix}$$

Then

$$\begin{array}{l} [\exists ! \ x \in E, P(x)] & \Longleftrightarrow \\ [\exists x \in E, P(x)] \text{or} [\forall x, x' \in E, (P(x), P(x') \Longrightarrow x = x')] \\ [\exists ! \ x \in E, P(x)] & \longleftrightarrow \\ \left[\forall x \in E, \overline{P(x)}\right] \text{ or } [\exists x, x' \in E, (P(x), P(x') \text{ and } x \neq x')] \end{array}$$

29 / 30

#### Example

•  $\exists ! x \in \mathbb{R}$ ,  $\ln x = 1$  is **true** ( $\ln e = 1$  and x = e is unique)

• 
$$[\exists! x \in \mathbb{R}, \ln x = 1] \iff$$

# $\begin{bmatrix} \forall x \in \mathbb{R}, \ln x \neq 1 \end{bmatrix} \text{ or } \begin{bmatrix} \exists x, x' \in \mathbb{R}, (\ln x = 1 = \ln x' = 1 \text{ and } x \neq x') \end{bmatrix}$ $\begin{array}{c} \text{FALSE} \\ \text{FALSE} \\ \end{array}$

• That is  $\overline{[\exists! x \in \mathbb{R}, \ln x = 1]}$  is **FALSE**