1- Logic and proofs



Propositional logic

°
@ Logical connectives

@ Mathematical quantifiers
°

Methods of proof



1-1 Proposition (statement)

@ Mathematical logic allows the study of mathematics as a language.

@ Mathematical logic is essential for the statement of a proposition and
the study its truth value. So, this is the basis of all mathematical
reasonning.

@ Logic and proofs form the foundation of mathematics.

@ In this course, we will explore the basic concepts of logic, the
structure of mathematical proofs, and various proof techniques.



1-1 Propositional logic

@ Propositional logic deals with propositions and their logical
relationships.

o Definition

@ A proposition ( statement) is a mathematically precise statement
that is either true or false, but not both.

@ We often note a proposition by letters P, Q, R, ...

e If a proposition P is true, it is assigned the value 1 or T (true), and if
it is false, it is assigned the value 0 or F (false).

_{true —slor T

° false — O or F
P P
@ Truth table| 1 |or| T
0 F




1-1 Propositional logic

Principle of non-contradiction

A proposition can not be true and false at the same time.
Principle of excluded third party

A proposition is either true or false but not a third possibility
Examples

374 is divisible by 11 (Proposition-true) : 374 = 34.11

The natural number 4 is less than (<) the real number 7
(Proposition-false) : 7T ~ 3, 14.

1+ /2 is not a proposition, because this expression doest not have a
true value.

x + 1> 5 is not a proposition. The true value of this statement relies
on what the variable x is assigned.

It gets a logical statement (proposition) if we choose a value for x.(It
is called a propositional function or predicate).



1-1 Propositional logic

Definition
Wen a proposition depnds on a variable or sereval variables, it is called a
propositional function or predicate.
Examples
o P(x):eX >1.
The predicate P(x) is true if x > 0 and it is false if x < 0.

° Q(x,y) : For all real number x, there exists a real number y such
that y > x.
This predicate is true, because for any real number x, we can choose
y=x+1 Sothaty =x+1> x.
@ R(x,y) : There exists a real number x such that, for all real number
vy, we have y > x.
This predicate is not true, because is not possible to find a real number x

such that all other real numbers y
are strictly greater than x. There is no smallest real number, because real

numbers extend toward neﬁative



1-2 Logical connectives

@ We are particulary interested in combining propositions by operators
or connectors ( connectives).

Definition

A coumpound proposition is a statement obtained by combining
propositions with logical connevtives (operators).

1-2-1 Negation

The negation of a proposition P is denoted by not(P) or TP or P.

@ not(P) is true if P is false and alse if P is true.

pP[P| [P[P
@ Truthtable| 1 | O |or| T | F
01 F| T

Remark

e not(not(P)) is P ((P) is P. That is the negation of the negation of
the proposition P is P.

0 ED)



1-2 Logical connectives

Examples
e P:|x| <1, its negation is P : |x| > 1.
@ Q:4iseven. Q:4isnoteven. that is to say : 4 is odd.

@ R : All students are in the lecture hall.
R : Not all students are in the lecture hall.
That is to say R : There is a student that is not in the lecture hall.

@ S : 3 divides 15 and divides 81.
S : 3 does not divide 15 or does not divide 81.
@ T :If a natural number n is a multiple of 4 then it is even.

T : A natural number n is a multiple of 4 and it is odd.



1-2 Logical connectives

1-2-2 Equivalence <=
@ P <= @ is the proposition " P is equivalent to @ ", or " P if and

only if @ ".
P <= Q@ is true when P and Q are both true or both false.
PlQ|P=AQ Pl Q|P=Q
11 1 T| T T
@ Truth table| 1 | 0 0 or| T | F F
0|1 0 F| T F
00 1 F|F T

@ Two propositions are equivalent if they have identical truth tables.
Examples

@ For a, b two real numbers, (a.b=0) <= (a=0o0r b=0).
o For a natural integer n, (n is even) <= (n? is even) .
@ For real numbers a, b and ¢ with ¢ # 0,
(The equation ax? + bx + ¢ = 0 admits real solutions) <= (its
discriminant A = b? — 4ac > 0).
0 9 /30



1-2 Logical connectives

1-2-3 Conjunction A " and "
@ P A Q is the proposition " P and Q ".
This time for P A Q to be true, we need both P and @ to be true (
false otherwise).
The conjunction of two propositions is false if at least one of these
propositions is false or both are false.

PlQ|PAQR Pl Q|PAQ
11 1 T| T T
@ Truth table| 1 | 0 0 or| T | F F
0|1 0 F | T F
0|0 0 F | F F

Remark
e P AP is false. (Principle of non-contradiction)

P|P|PAP
1{o0] O
01| o0

0 10 / 30



1-2 Logical connectives

Examples
@ P:3is prime, Q : 3 divides 12
PAQ: (3is prime) and (3 divides 12) . This proposition is true.
@ P : nis an even natural number, @ : nis an odd natural number.
P A @Q :nis an even and odd natural number. This proposition is false.
@ P:nis an odd natural number. That is Q.
PA Q<= PAP,itis false.

@ x> —1and x <1 means |x| <1
e PANR:x<3and x>1

o If x =2 then PA Q is true.

o If x =5 then PA Q is false.
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1-2 Logical connectives

1-2-4 Disjunction V " or "

@ PV Q is the proposition " P or Q ".

PV Q@ is false when both P and @ are false and is true otherwise.

@ The disjunction of two propositions is true if at least one of these
propositions is true.

@ Truth table

Remark

PlQ|PVQ Pl Q|PVQ
11 1 T| T T
10 1 or| T | F T
0|1 1 F | T T
0|0 0 F | F F

@ PV P is true. (Principle of excluded third party)

12 /30



1-2 Logical connectives

Examples
@ P:2is not prime, Q : 2 divides 5.
PV Q : (2 is not prime) or (2 divides 5) . This proposition is false.
@ P : nis an even natural number, @ : nis an odd natural number.
PV @ : nis an even or odd natural number. This proposition is true.
@ P:nis an odd natural number. That is Q.
PV Q<= PV P, itis true.

@ x < —lorx>1means |x| > 1.
e PVQR:x<2o0rx>5

o If x =1 then PV Q is true.

o If x =3 then PV Q is false.

0 13 /30



1-2 Logical connectives

Remark Exclusive or " XOR " @

@ In everyday language, there is another " or "

(exclusive) .
P & Q is the proposition " P or @ ".

@ The statement P& Q is true if and only if exactly one of the
statements is true.

P & Q is true if only one of these propositions is true and false if both are
false or true simultaneously.

PIQ[P

Q P®Q

@ Truth table or

Ol—ll—lOEB
miTiH| S|
|~ T~
i i |l

1
0
1
0

OO+

Example
The student chooses math or computer science and not both.

0 14 / 30



1-2 Logical connectives

De Morgan’s laws : Negation of A and V
PANQ<=PVQ@ and PVQ <= PAQ
Proof by truth table

PIQ|P|Q|PAQ|PAQR|PVQR|PVQR|PVQR|PAR
171010 1 0 0 1 0 0
1/0f0]1 0 1 1 1 0 0
o110 0 1 1 1 0 0
olof1]1 0 1 1 0 1 1

Definition Tautology-Antilogy(contradiction)

@ A proposition that is always true is called a tautology.

@ A proposition that is always false is called an antilogy or a
contradiction.

Examples

e PV P is a tautology.
@ P AP is an antilogy or a contradiction.

0 15 / 30



1-2 Logical connectives

1-2-5 Implication — " If...then... "

@ It is an essential connective ( operator ) in mathematics, because it is
thanks to it mathematics advances. It ollows us to state news truths.

@ P = Q@ is the proposition " P implies @ " or " If P then Q ",
which is false when P is true and @ is false and true otherwise.

@ The mathematical definition of an implication is :

[P= Q] < [PV Q]

o Truth table
PIQ|PIP=Q|PVQ
11110 1 1
11010 0 0
0|11 1 1
0(0]1 1 1

e P=— Q and PV Q have identical truth tables.
@ P is a suffisant condition for Q.

@ @ is a necessary condition for P.
0 16 / 30



1-2 Logical connectives

Examples

@ The implication (1 =2 = 3 =4) is true.

o (Because if we assume that 1 = 2, then by adding 2 to both sides of
this equality we obtain 3 = 4)

@ The implication [(1 =2) and (4 =3)] = [1+4 =2+ 3] is true.

o (Because if a= b and ¢ = d then a+c=b+d)

e 0 < x <100 = /x < 10. This implication is true (take the square
root).

@ sinx =0 = x = 0 is false (look for x = 27t for example);

Remark
[Pe= Q] <= [P = Q] A\ [Q = P]

PIQIP=Q| Q=P |[P=QN[QR=P]| P=Q
1|1 1 1 1 1
110 0 1 0 0
01 1 0 0 0
00 1 1 1 1

0 17 / 30



1-2 Logical connectives

Negation of an implication
o We know that (P = Q) <= (P V Q) (definition of =)
So, (P= Q) <= (ﬁ\/ Q) — ((TP)/\5> (De Morgan'’s laws).

@ Hence (P = Q) <= (PAQ)
Examples

@ Let a and b be two real numbers.

e R:[(a=0) or (b=0)] = a.b=0is true
R:[(a=0) or (b=0)] and a.b # 0 is false.

0S5:a2>0=a>0 isfalse(a=—-2:2a2=4>0).
S5:(a>>0) and (a<0)is true.

e T :nisodd = n?is odd. (nis a natural integer) is true.

T : (nis odd) and (n? is even) is false.

0 18 / 30



1-2 Logical connectives

Convese of an implication
@ The implication " @ = P " is called the converse of " P —= Q ".

PlQIP=Q| Q=P
111 1 1
110 0 1
0|1 1 0
0|0 1 1

@ Q = P is not equivalent to P — Q@
Example

@ Let x a real number.

@ x >5=— x> 1is true, but

@ x > 1= x> 5is false ( for example x = 2)

@ x2 >4 = x > 2 is false, because for x = —3 we have
(=3 =9>4and x=—3<2

But, x > 2 = x2 > 4 is true.
0 19 /30



1-2 Logical connectives

Contrapositive of an implication

@ Let P and Q be two propositions.
o " Q = Ii” iicalled the contEpositiie of "P—= Q".

PIlQRIPI QIP=QR| Q=P
111100 1 1

e| 10|01 0 0
o|1]1]0 1 1
0|0 |11 1 1

o P — Q@ is equivalent to its contrapositive.
(Q=P) = (P=Q)
Examples
@ Let a, b be two real numbers and n is a natural integer.
o [(a=00rb=0) = (a.b=0)] <=
[(a.b#0) = (a# 0 and b # 0)]
e [(n# 2 and nis prime) = n is odd] <=
[nis even = (n =2 or n is not prime)]

0 20 / 30



1-2 Logical connectives

To remember

e PANQ= PVQ (De Morgan's laws).

e PVQR <= PAQ (De Morgan's laws).

o (P= Q)<= (PVQ) (definition of =)

o (P= Q)<= (PAQ) (negation of =)

o (Q= P) < (P = Q) (contrapositive of =)

e (Q = P) is not equivalent to (P = Q)  (conserve of =)
° |

P Q<= [P= Q| N[Q = P]

0 21/ 30



1-2 Logical connectives

Properties of logical connectives

o (P)<=P, PAQ<+= QAP, PVQ<+< QVP
o (P—= Q)<= (Q<=P),PN\P<= P, PVP<—=P
(PANQ)AR<—= PA(QAR)
(PVQ)VR<—= PV (QVR)

PA(QVR)<— (PAQ)V(PAR)
PV(QAR) <~ (PVQ)AN(PVR)
PAQ <+ PVQ

PVQR<+=PAQ

(P= Q)<= (PVQ)

(P= Q)<= PAQ
(Q=P) = (P= Q)

[P<= Q]| <= [P= Q|N[Q = P]

o [(P= QN (QR=R)|= (P=R)

@ PAP isfalse, P A F is false where F is false.

@ PV P istrue, PV T is true where T is true.

0 22 /30




1-3 Mathematical quantifiers

@ In mathematics, we often use expressions of the form :

"for all ", " for any "," there exists at least ", " there exists a
unique ".

@ These expressions are called " quantifiers".

@ The word quantifier comes from the word quantity.

0 23 / 30



1-3 Mathematical quantifiers

Definition
There are two types of quantifiers :
Universal quantifier V

e Vx — for all x

@ Vx, P(x) : means that the predicate P (x) is true for all possible
values of x.

Existential quantifier 3

@ dx — there exists x (there exists at least x) or there is x.
e dx, P(x) : means there exists x where P (x) is true.
e Sometimes, we will use also 3! x, P (x)

@ it means there exists a unique x where P (x) is true

0 24 / 30



1-3 Mathematical quantifiers

Negation of quantifiers

o Consider the universal statement Vx, P (x)

@ This asserts that P (x) is true for all values of x.

@ Hence, if it is false, then this means that there exists at least x such
that P (x) is false.

Similary, the existential statement dx, P (x) , asserts that there exists
at least x where P (x) is true.

Hence, if it is false, this means that for all values of x, P (x) is false.
That is P (x) is true.

Therefore, we have the following :

0 25 / 30



1-3 Mathematical quantifiers

Examples
e VxeR, x2>0 true
@ For all real number x, his square is greater than or equal to zero.
@ Negation of this proposition is
e dxeR, x2<0 false
@ There exists a real number x, whose his square is less than to zero.
e 3! ne€ N such that n < 1 true (n=0)
@ There exists a unique natural number n, which is less than one.

0 26 / 30



1-3 Mathematical quantifiers

Remark 1

@ Some statements involve several quantifiers.
@ The statement : Yx € R € dy € R, y > x. (true)
means that for all real number x, there exists at least one real number y,
which is greater than x.
@ This statement is true ( For x € R we can choose y = x+1 > x).
@ The order of the quantifiers is very important.
@ The statement : dy € R,Vx € R, y > x. (false).

@ There does not exist a real number which is greater than all other real
numbers.

0 27 / 30



1-3 Mathematical quantifiers

Remark 2
e Vx,dy, P(x,y) < dy,Vx, P(x,y)
is not equivalent to
e Ix,Vy, P(x,y) ¢ Vy,3x, P(x,y)
is not equivalent to

e Vx,Vy, P(x,y) <= Vy,Vx, P(x,y)
e dx, dy, P(x,y) < Ty, 3x, P(x,y)

e Vx, 3y, P(x,y) < 3x,Vy, P(x,y)

e dx,Vy,P(x,y) <= Vx, 3y, P(x,y)

0 28 / 30



1-3 Mathematical quantifiers

Negation of there exists a unique
@ Negation of 3! x € E

[3!'x € E,P(x)] <=
[3x € E,P(x)] and [Vx,x" € E, (P (x) and P(x') = x = x')]
Existence uniqueness

@ Then
[A'x € E,P(x)] =

[3x € E, P (x)]or[Vx,x" € E,(P(x), P(x') = x = x')]
[3'x € E,P(x)]

[Vx € Em] or[Ix,x' € E,(P(x), P(x") and x # x')]

0 29 / 30



Example

e I'xeR,Inx=1 istrue (Ine =1 and x = e is unique)

o A xeR Inx=1] <=

[Vx € R,Inx # 1] or [3x,x' € R, (Inx=1=Inx"=1 and x # x')]
FALSE FALSE

o Thatis [3! x € R, Inx = 1] is FALSE

0 30 / 30
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