

TUTORIAL SHEET NUMBER 01

Exercise 1. Let f be a function defined on \mathbb{R} by $f(x) = \frac{\sin x + \cos x}{1 + \cos^2 x}$. Show that, for all $a \in \mathbb{R}$, f' has at least a zero on each interval $(a; a + 2\pi)$.

Exercise 2. Optional. Let p and q be two real numbers and n be a natural number greater than or equal to 2. Show that the polynomial P defined on \mathbb{R} by $P(x) = x^n + px + q$ has at most three real roots if n is odd and, at most two real roots if n is even.

Exercise 3.

1. Using the Mean Value Theorem, show that:

$$\forall x \in \mathbb{R}, \qquad \frac{1}{1+x} < \ln(x+1) - \ln x < \frac{1}{x}.$$

- 2. Deduce that the functions f and g defined on \mathbb{R}^*_+ by $f(x) = \left(1 + \frac{1}{x}\right)^x$ and $g(x) = \left(1 + \frac{1}{x}\right)^{x+1}$ are monotonic.
- 3. Determine the limit at infinity of $\ln f$ and $\ln g$, then f and g.

Exercise 4. Let $n \in \mathbb{N}^*$. Establish the n^{th} derivative of the following functions (i) $f_1: x \mapsto f_1(x) = \exp(ax), \quad a \in \mathbb{R}^*.$ (iii) $f_3: x \mapsto f_3(x) = \frac{1}{1+x}.$

(ii)
$$f_2: x \mapsto f_2(x) = \sin(x)$$
. (iv) **Optional.** $f_4: x \mapsto f_4(x) = \frac{1}{1-x}$.

Exercise 5.

- 1. Compute the asymptotic (power) expansion of order three of the following functions in a neighborhood of 0:
 - (a) $x \mapsto \tan x$. (b) $x \mapsto \ln^2(1+x)$. (c) Optional. $x \mapsto \exp(\cos x)$. (c) Optional. $x \mapsto (1+x)^{1/(1+x)}$.
 - (c) $x \mapsto \frac{1}{\cos x}$. (f) **Optional.** $x \mapsto \frac{\sqrt{1+x^2}}{1+x+\sqrt{1+x^2}}$.

2. **Optional.** Deduce simple asymptotic equivalences of these functions in a neighborhood of 0.

Exercise 6. Considering the functions f_i , $(i = \overline{1,5})$ given for all x > 0 by

- $f_1(x) = x \ln x$, • $f_3(x) = x^2 \exp\left(\frac{1}{x}\right)$, • $f_5(x) = \exp\left(\frac{1}{\ln x}\right)$.
- $f_2(x) = \ln(1+x),$ $f_4(x) = \frac{x^3}{\ln x},$
- 1. Verify that in a neighborhood of 0, we have: $f_4 = o(f_2)$, $f_2 = o(f_1)$, $f_1 = o(f_5)$, $f_5 = o(f_3)$.
- 2. **Optional.** Verify that in a neighborhood of ∞ , we have: $f_5 = o(f_2)$, $f_2 = o(f_1)$, $f_1 = o(f_3)$, $f_3 = o(f_4)$

Exercise 7. Estimate the following limits

1. $\lim_{x \to 0} \frac{\exp(x^2) - \cos x}{x^2}$. 2. $\lim_{x \to 0} \frac{\ln(1+x) - \sin x}{x}$. 3. $\lim_{x \to 0} \frac{\cos x - \sqrt{1-x^2}}{x^4}$. 4. Optional. $\lim_{x \to -\infty} \sqrt{x^2 + 3x + 2} + x$. 5. Optional. $\lim_{x \to +\infty} \left(\cos \frac{1}{x}\right)^{x \ln x}$. 6. Optional. $\lim_{x \to 1} \frac{(2x - x^3)^{1/3} - \sqrt{x}}{1 - x^{3/4}}$.