Tutorial Sheet number 01

Exercise 1. Let f be a function defined on \mathbb{R} by $f(x)=\frac{\sin x+\cos x}{1+\cos ^{2} x}$. Show that, for all $a \in \mathbb{R}, f^{\prime}$ has at least a zero on each interval $(a ; a+2 \pi)$.

Exercise 2. Optional. Let p and q be two real numbers and n be a natural number greater than or equal to 2. Show that the polynomial P defined on \mathbb{R} by $P(x)=x^{n}+p x+q$ has at most three real roots if n is odd and, at most two real roots if n is even.

Exercise 3.

1. Using the Mean Value Theorem, show that:

$$
\forall x \in \mathbb{R}, \quad \frac{1}{1+x}<\ln (x+1)-\ln x<\frac{1}{x} .
$$

2. Deduce that the functions f and g defined on \mathbb{R}_{+}^{*} by $f(x)=\left(1+\frac{1}{x}\right)^{x}$ and $g(x)=\left(1+\frac{1}{x}\right)^{x+1}$ are monotonic.
3. Determine the limit at infinity of $\ln f$ and $\ln g$, then f and g.

Exercise 4. Let $n \in \mathbb{N}^{*}$. Establish the $n^{\text {th }}$ derivative of the following functions
(i) $f_{1}: x \mapsto f_{1}(x)=\exp (a x), \quad a \in \mathbb{R}^{*}$.
(iii) $f_{3}: x \mapsto f_{3}(x)=\frac{1}{1+x}$.
(ii) $f_{2}: x \mapsto f_{2}(x)=\sin (x)$.
(iv) Optional. $f_{4}: x \mapsto f_{4}(x)=\frac{1}{1-x}$.

Exercise 5.

1. Compute the asymptotic (power) expansion of order three of the following functions in a neighborhood of 0 :
(a) $x \mapsto \tan x$.
(d) Optional. $x \mapsto \exp (\cos x)$.
(b) $x \mapsto \ln ^{2}(1+x)$.
(e) Optional. $x \mapsto(1+x)^{1 /(1+x)}$.
(c) $x \mapsto \frac{1}{\cos x}$.
(f) Optional. $x \mapsto \frac{\sqrt{1+x^{2}}}{1+x+\sqrt{1+x^{2}}}$.
2. Optional. Deduce simple asymptotic equivalences of these functions in a neighborhood of 0 .

Exercise 6. Considering the functions $f_{i},(i=\overline{1,5})$ given for all $x>0$ by

- $f_{1}(x)=x \ln x$,
- $f_{3}(x)=x^{2} \exp \left(\frac{1}{x}\right)$,
- $f_{5}(x)=\exp \left(\frac{1}{\ln x}\right)$.
- $f_{2}(x)=\ln (1+x)$,
- $f_{4}(x)=\frac{x^{3}}{\ln x}$,

1. Verify that in a neighborhood of 0 , we have: $f_{4}=o\left(f_{2}\right), \quad f_{2}=o\left(f_{1}\right), \quad f_{1}=o\left(f_{5}\right), \quad f_{5}=o\left(f_{3}\right)$.
2. Optional. Verify that in a neighborhood of ∞, we have: $f_{5}=o\left(f_{2}\right), f_{2}=o\left(f_{1}\right), f_{1}=$ $o\left(f_{3}\right), f_{3}=o\left(f_{4}\right)$

Exercise 7. Estimate the following limits

1. $\lim _{x \rightarrow 0} \frac{\exp \left(x^{2}\right)-\cos x}{x^{2}}$.
2. $\lim _{x \rightarrow 0} \frac{\ln (1+x)-\sin x}{x}$.
3. $\lim _{x \rightarrow 0} \frac{\cos x-\sqrt{1-x^{2}}}{x^{4}}$.
4. Optional. $\lim _{x \rightarrow-\infty} \sqrt{x^{2}+3 x+2}+x$.
5. Optional. $\lim _{x \rightarrow+\infty}\left(\cos \frac{1}{x}\right)^{x \ln x}$.
6. Optional. $\lim _{x \rightarrow 1} \frac{\left(2 x-x^{3}\right)^{1 / 3}-\sqrt{x}}{1-x^{3 / 4}}$.
