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Exercise 1. Establish the following limits when they exist
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Exercise 2. Optional. Let f be the function defined on 2 C R by f(x) = L}J

1. Determine the domain Z of f.

2. Calculate lim,_ o+ f ().
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3. Deduce lim x {J and lim 22 {J
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Exercise 3. Let f be the floor function, i.e., f:z — f(z) = [z].
1. Plot the graph of the function f.
2. At which points f is continuous 7

3. Among its points of discontinuity, at which points is it continuous on the left? continuous on
the right?

4. Ts the function g :  — g(z) = |z + (x — |z])? continuous.

Exercise 4. Optional. Let f be a contiuous function on R. Show that if f is a zero function on Q,
then f is a constant zero function.

Exercise 5. Let f and g defined by
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1. Are f and g continuous.
2. Establish the continuous extension of f on R,.
3. Has g a continuous extension at 0 7

Exercise 6. Optional. Let f : R — R be a periodic continuous function. Show that, if f has a limit
at infinity, then f is a constant function.

Exercise 7. Optional. Let f and g be two reel functions defined on ¥ C R, 2y € Z; and 1, ¢5 € R.
Show that, if lim,_,, f(z) = ¢1 and lim,_,,, g(z) = {2, then

(1) limg sz (f(2) + g(2)) = b+ £2;
(%) limg_yz, (f(x) - g(x)) =41 - La.
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