## Tutorial Sheet number 03

Exercise 1. Establish the following limits when they exist
(i) $\lim _{x \rightarrow+\infty} \frac{x^{2}+2 x-1}{x^{2}+x-3}$.
(v) $\lim _{x \rightarrow+\infty}\left(\frac{1}{x}\right)^{x^{2}}$.
(ii) $\lim _{x \rightarrow 0} \frac{x^{2}+2|x|}{x}$.
(vi) $\lim _{x \rightarrow+\infty} \frac{\cos x}{x^{2}}$.
(iii) $\lim _{x \rightarrow 1} \frac{1}{1-x}-\frac{2}{1-x^{2}}$.
(vii) $\lim _{x \rightarrow 0} \frac{x}{a}\left\lfloor\frac{b}{x}\right\rfloor, \quad a, b \in \mathbb{R}_{+}^{*}$.
(iv) $\lim _{x \rightarrow+\infty} \sqrt{x-1}-\sqrt{x-4}$.
(viii) Optional. $\lim _{x \rightarrow 0} \frac{b}{x}\left\lfloor\frac{x}{a}\right\rfloor, \quad a, b \in \mathbb{R}_{+}^{*}$.

Exercise 2. Optional. Let $f$ be the function defined on $\mathscr{D} \subseteq \mathbb{R}$ by $f(x)=\left\lfloor\frac{1}{x}\right\rfloor$.

1. Determine the domain $\mathscr{D}$ of $f$.
2. Calculate $\lim _{x \rightarrow 0^{+}} f(x)$.
3. Deduce $\lim _{x \rightarrow 0^{+}} x\left\lfloor\frac{1}{x}\right\rfloor$ and $\lim _{x \rightarrow 0^{+}} x^{2}\left\lfloor\frac{1}{x}\right\rfloor$.

Exercise 3. Let $f$ be the floor function, i.e., $f: x \mapsto f(x)=\lfloor x\rfloor$.

1. Plot the graph of the function $f$.
2. At which points $f$ is continuous ?
3. Among its points of discontinuity, at which points is it continuous on the left? continuous on the right?
4. Is the function $g: x \mapsto g(x)=\lfloor x\rfloor+(x-\lfloor x\rfloor)^{2}$ continuous.

Exercise 4. Optional. Let $f$ be a contiuous function on $\mathbb{R}$. Show that if $f$ is a zero function on $\mathbb{Q}$, then $f$ is a constant zero function.

Exercise 5. Let $f$ and $g$ defined by

$$
\begin{array}{rlrl}
f: \mathbb{R}_{+}^{*} & \longrightarrow \mathbb{R} \\
x & \mapsto f(x)=\frac{\sin x}{\sqrt{x}} . & g: \mathbb{R}_{+}^{*} & \longrightarrow \mathbb{R} \\
& x & \mapsto & g(x)=(x)^{1 / x} .
\end{array}
$$

1. Are $f$ and $g$ continuous.
2. Establish the continuous extension of $f$ on $\mathbb{R}_{+}$.
3. Has $g$ a continuous extension at 0 ?

Exercise 6. Optional. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a periodic continuous function. Show that, if $f$ has a limit at infinity, then $f$ is a constant function.

Exercise 7. Optional. Let $f$ and $g$ be two reel functions defined on $\mathscr{D} \subseteq \mathbb{R}, x_{0} \in \mathscr{D}$; and $\ell_{1}, \ell_{2} \in \mathbb{R}$. Show that, if $\lim _{x \rightarrow x_{0}} f(x)=\ell_{1}$ and $\lim _{x \rightarrow x_{0}} g(x)=\ell_{2}$, then
(i) $\lim _{x \rightarrow x_{0}}(f(x)+g(x))=\ell_{1}+\ell_{2}$;
(ii) $\lim _{x \rightarrow x_{0}}(f(x) \cdot g(x))=\ell_{1} \cdot \ell_{2}$.

