

TUTORIAL SHEET NUMBER 03

Exercise 1. Establish the following limits when they exist

 $\begin{array}{ll}
\text{(i)} & \lim_{x \to +\infty} \frac{x^2 + 2x - 1}{x^2 + x - 3}. \\
\text{(ii)} & \lim_{x \to 0} \frac{x^2 + 2|x|}{x}. \\
\text{(iii)} & \lim_{x \to 1} \frac{1}{1 - x} - \frac{2}{1 - x^2}. \\
\text{(iv)} & \lim_{x \to +\infty} \sqrt{x - 1} - \sqrt{x - 4}. \\
\text{(iv)} & \lim_{x \to +\infty} \sqrt{x - 1} - \sqrt{x - 4}. \\
\text{(iv)} & \lim_{x \to +\infty} \frac{b}{x} \left| \frac{x}{a} \right|, \quad a, b \in \mathbb{R}^*_+. \\
\text{(viii)} & \text{Optional.} & \lim_{x \to 0} \frac{b}{x} \left| \frac{x}{a} \right|, \quad a, b \in \mathbb{R}^*_+. \\
\text{(viii)} & \text{Optional.} & \lim_{x \to 0} \frac{b}{x} \left| \frac{x}{a} \right|, \quad a, b \in \mathbb{R}^*_+. \\
\end{array}$

Exercise 2. Optional. Let f be the function defined on $\mathscr{D} \subseteq \mathbb{R}$ by $f(x) = \left|\frac{1}{x}\right|$.

- 1. Determine the domain \mathscr{D} of f.
- 2. Calculate $\lim_{x\to 0^+} f(x)$.
- 3. Deduce $\lim_{x \to 0^+} x \left\lfloor \frac{1}{x} \right\rfloor$ and $\lim_{x \to 0^+} x^2 \left\lfloor \frac{1}{x} \right\rfloor$.

Exercise 3. Let f be the floor function, i.e., $f : x \mapsto f(x) = \lfloor x \rfloor$.

- 1. Plot the graph of the function f.
- 2. At which points f is continuous ?
- 3. Among its points of discontinuity, at which points is it continuous on the left? continuous on the right?
- 4. Is the function $g: x \mapsto g(x) = |x| + (x |x|)^2$ continuous.

Exercise 4. Optional. Let f be a continuous function on \mathbb{R} . Show that if f is a zero function on \mathbb{Q} , then f is a constant zero function.

Exercise 5. Let f and g defined by

- 1. Are f and g continuous.
- 2. Establish the continuous extension of f on \mathbb{R}_+ .
- 3. Has g a continuous extension at 0 ?

Exercise 6. Optional. Let $f : \mathbb{R} \to \mathbb{R}$ be a periodic continuous function. Show that, if f has a limit at infinity, then f is a constant function.

Exercise 7. Optional. Let f and g be two reel functions defined on $\mathscr{D} \subseteq \mathbb{R}$, $x_0 \in \mathscr{D}$; and ℓ_1 , $\ell_2 \in \mathbb{R}$. Show that, if $\lim_{x \to x_0} f(x) = \ell_1$ and $\lim_{x \to x_0} g(x) = \ell_2$, then

- (i) $\lim_{x \to x_0} (f(x) + g(x)) = \ell_1 + \ell_2;$
- (*ii*) $\lim_{x \to x_0} (f(x) \cdot g(x)) = \ell_1 \cdot \ell_2.$