Series of Tutorial 2 - Math2

Exercise 1

Let the system be (S)

$$
\left\{\begin{aligned}
x+2 y & =5 \\
2 x+7 y & =-2 .
\end{aligned}\right.
$$

Resolve the system (S) using the four methods: substitution, determinants (Cramer's rule), Gauss elimination (pivot method), and by inverting the coefficient matrix.

Exercise 2

Resolve the following system using the determinant method:

$$
\left\{\begin{array}{l}
2 x+3 y-z=5 \\
x-2 y+2 z=-1 \\
3 x+y-3 z=4
\end{array}\right.
$$

Exercise 3

Solve the following system of linear equations using the method of inverse matrix of coefficients:

$$
\left\{\begin{array}{l}
2 x+3 y-z=1 \\
x-y+2 z=3 \\
3 x+y+z=7
\end{array}\right.
$$

Exercise 4

Solve the following system using the Gauss elimination method (pivot method):

$$
\left\{\begin{array}{l}
x+2 y-z=4 \\
2 x-y+z=0 \\
3 x+4 y+2 z=10
\end{array}\right.
$$

Exercise 5

Resolve the following system where x, y, and z are positive real numbers:

$$
\left\{\begin{array}{l}
x^{3} y^{2} z^{6}=1 \\
x^{4} y^{5} z^{12}=2 \\
x^{2} y^{2} z^{5}=3
\end{array}\right.
$$

