

L1-ST

A.Y: 2023-2024

Series of Tutorials number 0 - Math2

Exercise 1

Among the following sets, identify those that are vector subspaces:

1)
$$E_1 = \{(x, y, z, t) \in \mathbb{R}^4 | x = t \text{ et } y = z\}$$

3) $E_3 = \{(x, y) \in \mathbb{R}^2 | x^2 + xy \ge 0\}$

 $\begin{array}{l} 2)E_2 = \{(x,y,z) \in \mathbb{R}^3 | z = 1 \} \\ 4)E_4 = \{(x,y,z) \in \mathbb{R}^3 | x + y + z = 0 \} \end{array}$

Exercise 2

Are the following families linearly independent? i. $u_1 = (1, 0, 1), u_2 = (0, 2, 2)$ and $u_3 = (3, 7, 1)$ in \mathbb{R}^3 . ii. $v_1 = (1, 0, 0), v_2 = (0, 1, 1)$ and $v_3 = (1, 1, 1)$ in \mathbb{R}^3 .

Exercise 3

In \mathbb{R}^3 , consider the following subset:

$$E_1 = \{ (a+b, b-3a, a) \in \mathbb{R}^3 | a, b \in \mathbb{R} \}.$$

- 1. Show that E_1 is a subspace of \mathbb{R}^3 .
- 2. Determine a basis B_1 for E_1 .
- 3. Consequently, deduce the dimension of E_1 , denoted as dim E_1 .

Exercise 4 (SUPP)

Let f be a function defined by:

$$\begin{array}{ccc} f: & \mathbb{R}^3 & \longrightarrow \mathbb{R}^2 \\ & (x,y,z) & \longrightarrow f(x,y,z) = (2y-2z,x+y-2z). \end{array}$$

- 1. Show that f is a linear function.
- 2. Determine Kerf, the kernel of f, then provide a basis for Kerf and deduce the dimension of Kerf.

3. Is f injective?

- 4. Give dim(Imf).
- 5. Is f surjective?