Series of Tutorials number 0 - Math2

Exercise 1

Among the following sets, identify those that are vector subspaces:

1) $E_{1}=\left\{(x, y, z, t) \in \mathbb{R}^{4} \mid x=t\right.$ et $\left.y=z\right\}$
2) $E_{2}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid z=1\right\}$
3) $E_{3}=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+x y \geq 0\right\}$
4) $E_{4}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x+y+z=0\right\}$

Exercise 2

Are the following families linearly independent?
i. $u_{1}=(1,0,1), u_{2}=(0,2,2)$ and $u_{3}=(3,7,1)$ in \mathbb{R}^{3}.
ii. $v_{1}=(1,0,0), v_{2}=(0,1,1)$ and $v_{3}=(1,1,1)$ in \mathbb{R}^{3}.

Exercise 3

In \mathbb{R}^{3}, consider the following subset:

$$
E_{1}=\left\{(a+b, b-3 a, a) \in \mathbb{R}^{3} \mid a, b \in \mathbb{R}\right\}
$$

1. Show that E_{1} is a subspace of \mathbb{R}^{3}.
2. Determine a basis B_{1} for E_{1}.
3. Consequently, deduce the dimension of E_{1}, denoted as $\operatorname{dim} E_{1}$.

Exercise 4 (SUPP)

Let f be a function defined by:

$$
\begin{aligned}
f: \mathbb{R}^{3} & \longrightarrow \mathbb{R}^{2} \\
(x, y, z) & \longrightarrow f(x, y, z)=(2 y-2 z, x+y-2 z) .
\end{aligned}
$$

1. Show that f is a linear function.
2. Determine Kerf, the kernel of f, then provide a basis for Kerf and deduce the dimension of Kerf.
3. Is f injective?
4. Give $\operatorname{dim}(\operatorname{Im} f)$.
5. Is f surjective?
