Integrals

Université de Tlemcen

Faculté des Sciences
March 20, 2024

1 Indefinite Integral and its Properties

Let $f(x)$ be a continuous function on a given interval. The indefinite integral of $f(x)$, denoted $\int f(x) d x$, is defined as:

$$
\int f(x) d x=F(x)+C
$$

Where $F(x)$ is a function whose derivative is equal to $f(x)$, i.e., $F^{\prime}(x)=f(x)$, and C is an arbitrary constant.

1.1 Definition of a Primitive

A primitive of a function is a function whose derivative is equal to the given function. Formally, let $f(x)$ be a function defined on an interval I. A function $F(x)$ is a primitive of $f(x)$ on I if its derivative is equal to $f(x)$ for all x in I, i.e., if $F^{\prime}(x)=f(x)$ for all x in I.

In mathematical notation, this is written as:

$$
F^{\prime}(x)=f(x)
$$

A primitive of $f(x)$ is often denoted $\int f(x) d x$ and is called the indefinite integral of $f(x)$.

Fundamental Integration Formulas:

Function	Primitive
$\int k d x$	$k x+C($ where k is a constant $)$
$\int x^{n} d x$	$\frac{1}{n+1} x^{n+1}+C($ for all $n \neq-1)$
$\int e^{x} d x$	$e^{x}+C$
$\int \frac{1}{x} d x$	$\ln \|x\|+C($ for $x \neq 0)$
$\int \sin (x) d x$	$-\cos (x)+C$
$\int \cos (x) d x$	$\sin (x)+C$
$\int \tan (x) d x$	$-\ln \|\cos (x)\|+C$
$\int \frac{1}{\sqrt{1-x^{2}}} d x$	$\arcsin (x)+C$
$\int \frac{1}{1+x^{2}} d x$	$\arctan (x)+C$
$\int \frac{1}{\cos ^{2}(x)} d x$	$\tan (x)+C$
$\int \frac{1}{\sin ^{2}(x)} d x$	$-\cot (x)+C$
$\int \frac{1}{\sqrt{a^{2}-x^{2}}} d x$	$\arcsin \left(\frac{x}{a}\right)+C($ for $\|x\|<\|a\|)$
$\int \frac{1}{a^{2}+x^{2}} d x$	$\frac{1}{a} \arctan \left(\frac{x}{a}\right)+C$
$\int \frac{1}{\sqrt{x^{2}+a^{2}}} d x$	$\ln \left(x+\sqrt{\left.x^{2}+a^{2}\right)}+C\right.$
$\int \frac{1}{x \sqrt{x^{2}-a^{2}}} d x$	$\frac{1}{a} \ln \left\|\frac{x+\sqrt{x^{2}-a^{2}}}{a}\right\|+C($ for $x>a)$
$\int \frac{1}{\sqrt{x^{2}-a^{2}}} d x$	$\cosh { }^{-1}\left(\frac{x}{a}\right)+C($ for $x>a)$
$\int \frac{1}{\sqrt{a^{2}+x^{2}}} d x$	$\cosh ^{-1}\left(\frac{x}{a}\right)+C$
$\int \frac{1}{\sqrt{a^{2}-x^{2}}} d x$	$\frac{1}{2 a} \ln \left\|\frac{a+x}{a-x}\right\|+C($ for $\|x\|<\|a\|)$

2 Integration by Parts

$$
\int u d v=u v-\int v d u
$$

where u is a function that you choose to differentiate (and is typically easier to integrate), and $d v$ is a function that you choose to integrate (and is typically harder to integrate).

2.1 Integration by Change of Variables

Here are the steps to perform a change of variables and simplify an integral:

1. Choice of substitution variable: Identify the complex part of the integral and choose an appropriate substitution variable.
2. Calculation of $d u$: Compute $d u$ in terms of $d x$ after choosing the substitution variable u.
3. Replace the variable and $d x$: Replace u in the integral and $d x$ with the expression found for $d u$.
4. Integration with respect to u : Integrate the new integral with respect to u to make it more manageable.
5. Return to the original variable: Re-express the result in terms of the original variable x after integrating with respect to u.
6. Include the integration constant: Don't forget to include the integration constant C at the end of the result.

3 Integration of Rational Functions

Let $f(x)$ be a rational function defined by $f(x)=\frac{P(x)}{Q(x)}$, where $P(x)$ and $Q(x)$ are polynomials and $Q(x)$ is not identically zero.

The goal of integrating rational functions is to find a primitive of $f(x)$ using the method of integration by partial fractions. This method involves decomposing $f(x)$ into a sum of simple fractions, and then integrating each term separately.

3.1 Integration by Partial Fractions

To integrate a rational function, we start by decomposing $f(x)$ into partial fractions of the form $\frac{A}{(x-\alpha)}$, where α is a root of $Q(x)$ and A is a constant to be determined.

3.2 Integration of Rational Fractions

After decomposing a rational function into partial fractions, we integrate each term separately to obtain the primitive of $f(x)$.

4 Integration of Exponential and Trigonometric Functions

4.1 Integration of Exponential Functions

The integration of exponential functions is generally straightforward. For example, for e^{x}, we have:

$$
\int e^{x} d x=e^{x}+C
$$

For functions of the form a^{x} with $a>0$, we use a change of variable. For example, for a^{x} :

$$
\int a^{x} d x=\frac{1}{\ln (a)} \cdot a^{x}+C
$$

4.2 Integration of Trigonometric Functions

For functions of the form $\int \sin ^{n}(x) \cos ^{m}(x) d x$, we use changes of variable with $\sin (x)$ or $\cos (x)$.

For more complex expressions $\int f(\sin (x), \cos (x), \tan (x)) d x$, we can use $t=$ $\tan \left(\frac{x}{2}\right)$, with the relations:

$$
\cos (x)=\frac{1-t^{2}}{1+t^{2}}, \quad \sin (x)=\frac{2 t}{1+t^{2}}, \quad \tan (x)=\frac{2 t}{1-t^{2}}, \quad d x=\frac{2}{1+t^{2}} d t
$$

5 Definite Integration

Définition 5.1 Let $a<b \in \mathbb{R}$ and f be a continuous function on $[a, b]$, with F being a primitive of f. Then:

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

is called the definite integral from a to b.
The result of a definite integration is a constant number, not a function.

