Linear Algebra

University of Tlemcen
Faculty of Sciences

January 26, 2024

1 Vectorial Spaces

Définition 1.1 Let $\mathbb{K}=\mathbb{R}$ or \mathbb{C}, and E be a setequepped with two rules laws, one denoted by \oplus (internal) and the other denated by \otimes (external), defined by:" $\oplus: E \times E \longrightarrow E$
-

$$
\otimes: E \times \mathbb{K} \longrightarrow E
$$

$$
(x, y) \longrightarrow x \oplus y
$$

is called a vector space over \mathbb{K}, and it

1. $u \oplus v=v \oplus u($ for all $u, v \in E)$
2. $u \oplus(v \oplus w)=(u \oplus v) \oplus w(f \odot \operatorname{d} v, v, w \in E)$.
3. There exists a neutral elentent $0_{E} \in E$ such that $u \oplus 0_{E}=u$ for all $u \in E$.
4. Every $u \in E$ has a sypametric element u^{\prime} such that $u \oplus u^{\prime}=0_{E}$. This element u^{\prime} is noted $-u$
5. $\forall u \in E: 1 \otimes u=u$.
6. $\forall u \in E, \forall a, b \in$ 梷: $a \otimes(b \otimes u)=(a . b) \otimes u$ (. denotes the usual multiplication).
7. $\forall u \in E, \forall a, b \in \mathbb{K}:(a+b) \otimes u=(a \otimes u) \oplus(b \otimes u)$ (+ denotes the usual addition).
8. $\forall u, v \in E, \forall a \in \mathbb{K}: a \otimes(u \oplus v)=(a \otimes u) \oplus(a \otimes v)$.

The elements of E are called vectors, and the elements of \mathbb{K} are called scalars
Exemple 1.2 We equip \mathbb{R}^{2} with the following two rules of computation:

$$
\forall(x, y),\left(x^{\prime}, y^{\prime}\right) \in \mathbb{R}^{2}:(x, y)+\left(x^{\prime}, y^{\prime}\right)=\left(x+x^{\prime}, y+y^{\prime}\right)
$$

and

$$
\forall(x, y) \in \mathbb{R}^{2}, \forall \alpha \in \mathbb{R}: \alpha .(x, y)=(\alpha x, \alpha y)
$$

where + and \cdot represent the usual addition and multiplication, respectively. Equipped with these two operations, $\left(\mathbb{R}^{2},+, \cdot\right)$ forms an \mathbb{R}-vector space. More generally, for \mathbb{R}^{n} with the rules:

$$
\left(x_{1}, x_{2}, \ldots, x_{n}\right)+\left(y_{1}, y_{2}, \ldots, y_{n}\right)=\left(x_{1}+y_{1}, x_{2}+y_{2}, \ldots, x_{n}+y_{n}\right)
$$

and The operation defined by $\alpha \cdot\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\left(\alpha x_{1}, \alpha x_{2}, \ldots, \alpha x_{n}\right)$ constitutes an \mathbb{R}-vector space.

Proposition 1.3 Let (E, \oplus, \otimes) be a \mathbb{K}-vector space.

1. $\forall u \in E, 0 \otimes u=0_{E}$ (where 0_{E} is the neutral element of E).
2. $\forall \alpha \in \mathbb{K}: \alpha \otimes 0_{E}=0_{E}$
3. $\forall \alpha \in \mathbb{K}, \forall u \in E: \alpha \otimes(-u)=(-\alpha) \otimes u=-\otimes u$
4. $\forall \alpha \in \mathbb{K}, \forall u \in E: \alpha \otimes u=0 \Leftrightarrow \alpha=0$ or $u \subset \mathcal{g}_{E}$.

2 Vectorial subspaces

Definition 2.1 (O)
Definition 2.1 A nonempty subset F o \mathbb{C}-vector space E, equipped with the rules + and \cdot, is a vector subspace of e. We denote it as F vs. of E if and only if:

1. $F \neq \emptyset$.
2. $\forall u, v \in F, \forall \alpha, \beta \in \mathbb{K}: \alpha u \widehat{\beta} v \in F$.

Example 2.2 Let's show that
is a vectorial subspace of \mathbb{R}^{3} y

1. $E_{1} \neq \emptyset$, because $(0, \emptyset, 0) \in E_{1}$.
2. $\forall u=(x, y, z) \in E_{1}, \forall v=\left(x^{\prime}, y^{\prime}, z^{\prime}\right) \in E_{1}, \forall \lambda, \mu \in \mathbb{R}$:

$$
\lambda u+\mu v=\left(\lambda x+\mu x^{\prime}, \lambda y+\mu y^{\prime}, \lambda z+\mu z^{\prime}\right)
$$

Or,

$$
\left(\lambda x+\mu x^{\prime}\right)+\left(\lambda y+\mu y^{\prime}\right)-\left(\lambda z+\mu z^{\prime}\right)=\lambda \underbrace{(x+y-z)}_{=0}+\mu \underbrace{\left(x^{\prime}+y^{\prime}-z\right)}_{=0}=0 .
$$

because $u=(x, y, z) \in E_{1}$ et $v=\left(x^{\prime}, y^{\prime}, z^{\prime}\right) \in E_{1} \Rightarrow \lambda u+\mu v \in E_{1}$.
Conclusion: E_{1} is a vectorial subspace of \mathbb{R}^{3}.
Proposition 2.3 Every vectorial subspace of $a \mathbb{K}$-vector space E contains 0_{E}.

3 Linearly independent family, linearly dependent family

Définition 3.1 n non-zero vectors $v_{1}, v_{2}, \ldots, v_{n}$ in E are linearly independent (free) if and only if
$\forall a_{1}, a_{2}, \ldots, a_{n} \in \mathbb{K}:\left(a_{1} v_{1}+a_{2} v_{2}+\ldots+a_{n} v_{n}=0\right) \Rightarrow\left(a_{1}=a_{2}=\ldots=a_{n}=0\right)$.
Exemple 3.2 Consider the vectors in $\mathbb{R}^{3}: e_{1}=(1,0,0), e_{2}=(0,1,0)$, and $e_{3}=(0,0,1)$. Let's show that they are linearly independent:

$$
\begin{aligned}
& \qquad \begin{aligned}
a_{1} e_{1}+a_{2} e_{2}+a_{3} e_{3} & =a_{1}(1,0,0)+a_{2}(0,1,0)+a_{3}(0,0,1) \\
& =(0,0,0) \Longrightarrow
\end{aligned} \\
& \text { Thus, the family } e_{1}, e_{2}, e_{3} \text { is linearly independent.) }
\end{aligned}
$$

Définition $3.3 n$ vectors $v_{1}, v_{2}, \ldots, v_{n}$ in (F) dre linearly dependent if and only if the equation

$$
\begin{aligned}
& a_{1} v_{1}+a_{2} v_{2}+\cdots+a_{n} v_{n}=0, \\
& \text { with } a_{i} \neq 0
\end{aligned}
$$

has at least one solution with $a_{i} \neq 0$
Exemple 3.4 Consider the vectors $i \mathbb{R}^{3}: u_{1}=(1,1,0)$, $u_{2}=(0,1,1)$, and $u_{3}=(1,2,1)$. Let's show that they are linearly dependent:

$$
\begin{aligned}
a_{1} u_{1}+a_{2} u_{2}+a_{3} a_{3} & =a_{1}(1,1,0)+a_{2}(0,1,1)+a_{3}(1,2,1) \\
& \stackrel{(0,0,0)}{\Rightarrow} \begin{array}{ll}
a_{1}+a_{3} & =0 \\
a_{1}+a_{2}+2 a_{3} & =0 \\
a_{2}+a_{3} & =0
\end{array} \\
& \Rightarrow \begin{cases}a_{1} & =-a_{3} \\
a_{2} & =-a_{3}\end{cases}
\end{aligned}
$$

So, the family u_{1}, u_{2}, u_{3} is linearly dependent (It can be noticed that $u_{3}=u_{1}+u_{2}$, which implies that the family u_{1}, u_{2}, u_{3} is linearly dependent).

Définition 3.5 Let E be a \mathbb{K}-vector space, and $v_{1}, v_{2}, \ldots, v_{n}$, n vectors in E. Any expression of the form

$$
\alpha_{1} v_{1}+\alpha_{2} v_{2}+\ldots+\alpha_{n} v_{n}
$$

where $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n} \in \mathbb{K}$ are the coefficients, is called a linear combination of the vectors $v_{1}, v_{2}, \ldots, v_{n}$.

4 Bases and dimension of a vectorial space

Définition 4.1 A family $v_{1}, v_{2}, \ldots, v_{n}$ is said to be generating for E if and only if

$$
\forall v \in E, \exists \alpha_{i} \in \mathbb{K} \text { such that } v=\alpha_{1} v_{1}+\alpha_{2} v_{2}+\ldots+\alpha_{n} v_{n}
$$

that is:

$$
E=\left\{\sum_{i=1}^{n} \alpha_{i} v_{i} / \alpha_{i} \in \mathbb{K}\right\}
$$

and we haveécrit, $E=\operatorname{lin}\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ or $E=\operatorname{Vect}\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$.
Exemple 4.2 Let $E=\left\{(x+y, y-3 x, x) \in \mathbb{R}^{3} \mid x, y \in \mathbb{R}\right\}$.
For $u \in E \Rightarrow u=(x+y, y-3 x, x)=(x,-3 x, x)+(y, y, 0)=x(1,-3,1)+$ $y(1,1,0)$.
So $\{(1,-3,1),(1,1,0)\}$ is a generating family for $E . \vee$.
Définition 4.3 A base of a vector space E is any family that is both linearly independent and generating for E.

Exemple 4.4 The family e_{1}, e_{2}, e_{3} with $\left.\epsilon^{-}(1,0,0)\right), e_{2}=(0,1,0), e_{3}=(0,0,1)$ is a basis for \mathbb{R}^{3}. We have already shown that it linearly independent. Let's now show that it is generating:
For $u \in \mathbb{R}^{3}$ we have: $\left.u=(x, y, z)=x, 0,0\right)+(0, y, 0)+(0,0, z)=x(1,0,0)+$ $y(0,1,0)+z(0,0,1)$.
Therefore, e_{1}, e_{2}, e_{3} is a generating fandly for \mathbb{R}^{3}. Thus, it is a basis for \mathbb{R}^{3} and is called the canonical basis of \mathbb{R}^{2}.

Définition 4.5 If $e_{1}, e_{2}, \ldots, e_{\text {a }}$ is basis for the vector space E, then E is of finite dimension n. We denderif as $\operatorname{dim} E=n$. By convention, $\operatorname{dim} 0_{E}=0$.

5 Linear application

Let E and F be two \mathbb{K}-nectorial spaces.
Définition 5.1 A linear map T from E to F is defined as linear if and only if:

$$
\forall u, v \in E, \forall \alpha, \beta \in \mathbb{K}: T(\alpha u+\beta v)=\alpha T(u)+\beta T(v)
$$

Exemple 5.2 $T: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$ a map defined by $T(x, y)=(x+y, x-y)$. T is linear. Indeed, let $u=(x, y), v=\left(x^{\prime}, y^{\prime}\right) \in \mathbb{R}^{2}$ and let $\alpha, \beta \in \mathbb{R}$:

$$
\begin{gathered}
T(\alpha u+\beta v)=T\left(\alpha(x, y)+\beta\left(x^{\prime}, y^{\prime}\right)\right)=T\left(\alpha x+\beta x^{\prime}, \alpha y+\beta y^{\prime}\right) \\
=\left(\alpha x+\beta x^{\prime}+\alpha y+\beta y^{\prime}, \alpha x+\beta x^{\prime}-\alpha y-\beta y^{\prime}\right) \\
=\left(\alpha(x+y)+\beta\left(x^{\prime}+y^{\prime}\right), \alpha(x-y)+\beta\left(x^{\prime}-y^{\prime}\right)\right) \\
=(\alpha(x+y), \alpha(x-y))+\left(\beta\left(x^{\prime}+y^{\prime}\right), \beta\left(x^{\prime}-y^{\prime}\right)\right) \\
=\alpha(x+y, x-y)+\beta\left(x^{\prime}+y^{\prime}, x^{\prime}-y^{\prime}\right)=\alpha T(x, y)+\beta T\left(x^{\prime}, y^{\prime}\right)=\alpha T(u)+\beta T(v)
\end{gathered}
$$

Proposition 5.3 If T from E to F is a linear map, then:

1. $\forall u \in E: T(-u)=-T(u)$.
2. $T\left(0_{E}\right)=0_{F}$.

Définition 5.4 Let $T: E \longrightarrow F$ be a linear map. The kernel of T, denoted as $\operatorname{ker}(T)$, is defined as

$$
k e r T=\left\{u \in E ; T(u)=0_{F}\right\}
$$

Définition 5.5 Let $T: E \longrightarrow F$ be a linear map. The image of T, denoted as $\operatorname{Im}(T)$, is defined as

$$
\operatorname{Im} T=\{v \in F ; v=T(u) \text { avec } u \in E\}=T(E) .
$$

Proposition 5.6 Let $T: E \longrightarrow F$ be a linear map. Then, $k e r(T)$ is a subspace of E, and $\operatorname{Im}(T)$ is a subspace of F.

Theorem 5.7 Let $T: E \longrightarrow F$ a linear applidation, then:

1. T is injective $\Longleftrightarrow \operatorname{ker} T=\left\{0_{E}\right\}$.
2. T is surjective $\Longleftrightarrow \operatorname{ImT}=F$.

Theorem 5.8 (Kernel-Image Theorem) Let $T: E \longrightarrow F$ be a linear map, with $\operatorname{dim} E=n$ (finite), then

Proposition 5.9 If $T: E \longrightarrow \mathcal{F}$ is linear and $\operatorname{dim} E=\operatorname{dimF}=n$, then the following properties are equivallent

- T is bijective.
- T is injective.
- T is surjective.

6 Rank of a linear map

Définition 6.1 (Rank of a linear map) Let $T: E \longrightarrow F$ be a linear map. The rank of T is defined as the dimension of $\operatorname{Im}(T)$. It is denoted as

$$
r g(T)=\operatorname{dim}(\operatorname{Im}(T))=\operatorname{dim}(T(E)) \cdot r g(T)=\operatorname{dim}(\operatorname{Im}(T))=\operatorname{dim}(T(E))
$$

