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1 Vectorial Spaces

Définition 1.1 Let K = R or C, and E be a set equipped with two rules laws,
one denoted by ⊕ (internal) and the other denoted by ⊗ (external), defined by:”

⊕ : E × E −→ E

(x, y) −→ x⊕ y,
�

⊗ : E ×K −→ E

(x, α) −→ α⊗ x.
�

E is called a vector space over K, and it is denoted as K.v.s if and only if:

1. u⊕ v = v ⊕ u (for all u, v ∈ E).

2. u⊕ (v ⊕ w) = (u⊕ v)⊕ w (for all u, v, w ∈ E).

3. There exists a neutral element 0E ∈ E such that u⊕0E = u for all u ∈ E.

4. Every u ∈ E has a symmetric element u′ such that u ⊕ u′ = 0E. This
element u′ is noted −u.

5. ∀u ∈ E : 1⊗ u = u.

6. ∀u ∈ E,∀a, b ∈ K : a⊗ (b⊗ u) = (a.b)⊗ u (. denotes the usual multiplica-
tion).

7. ∀u ∈ E,∀a, b ∈ K : (a + b) ⊗ u = (a ⊗ u) ⊕ (b ⊗ u) (+ denotes the usual
addition).

8. ∀u, v ∈ E,∀a ∈ K : a⊗ (u⊕ v) = (a⊗ u)⊕ (a⊗ v).

The elements of E are called vectors, and the elements of K are called scalars

Exemple 1.2 We equip R2 with the following two rules of computation:

∀(x, y), (x′, y′) ∈ R2 : (x, y) + (x′, y′) = (x+ x′, y + y′)

and
∀(x, y) ∈ R2,∀α ∈ R : α.(x, y) = (αx, αy),
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where + and · represent the usual addition and multiplication, respectively.
Equipped with these two operations, (R2,+, ·) forms an R-vector space.
More generally, for Rn with the rules:

(x1, x2, ..., xn) + (y1, y2, ..., yn) = (x1 + y1, x2 + y2, ..., xn + yn)

and The operation defined by α · (x1, x2, ..., xn) = (αx1, αx2, ..., αxn) constitutes
an R-vector space.

Proposition 1.3 Let (E,⊕,⊗) be a K-vector space.

1. ∀u ∈ E, 0⊗ u = 0E (where 0E is the neutral element of E).

2. ∀α ∈ K : α⊗ 0E = 0E

3. ∀α ∈ K,∀u ∈ E : α⊗ (−u) = (−α)⊗ u = −α⊗ u.

4. ∀α ∈ K,∀u ∈ E : α⊗ u = 0 ⇔ α = 0 ou u = 0E .

2 Vectorial subspaces

Définition 2.1 A non-empty subset F of a K-vector space E, equipped with the
rules + and ·, is a vector subspace of E. We denote it as F v.s. of E if and
only if:

1. F ̸= ∅.

2. ∀u, v ∈ F,∀α, β ∈ K : αu+ βv ∈ F.

Exemple 2.2 Let’s show that

E1 = {(x, y, z) ∈ R3/x+ y − z = 0}

is a vectorial subspace of R3:

1. E1 ̸= ∅, because (0, 0, 0) ∈ E1.

2. ∀u = (x, y, z) ∈ E1,∀v = (x′, y′, z′) ∈ E1,∀λ, µ ∈ R :

λu+ µv = (λx+ µx′, λy + µy′, λz + µz′).

Or,

(λx+ µx′) + (λy + µy′)− (λz + µz′) = λ(x+ y − z)︸ ︷︷ ︸
=0

+ µ(x′ + y′ − z)︸ ︷︷ ︸
=0

= 0.

because u = (x, y, z) ∈ E1 et v = (x′, y′, z′) ∈ E1 ⇒ λu+ µv ∈ E1.

Conclusion: E1 is a vectorial subspace of R3.

Proposition 2.3 Every vectorial subspace of a K-vector space E contains 0E.

2



L
1-
ST

20
23
-2
02
4

3 Linearly independent family, linearly depen-
dent family

Définition 3.1 n non-zero vectors v1, v2, ..., vn in E are linearly independent
(free) if and only if

∀a1, a2, ..., an ∈ K : (a1v1 + a2v2 + ...+ anvn = 0) ⇒ (a1 = a2 = ... = an = 0).

Exemple 3.2 Consider the vectors in R3: e1 = (1, 0, 0), e2 = (0, 1, 0), and
e3 = (0, 0, 1). Let’s show that they are linearly independent:

a1e1 + a2e2 + a3e3 = a1(1, 0, 0) + a2(0, 1, 0) + a3(0, 0, 1)

= (0, 0, 0) =⇒


a1 = 0

a2 = 0

a3 = 0

Thus, the family e1, e2, e3 is linearly independent.

Définition 3.3 n vectors v1, v2, ..., vn in E are linearly dependent if and only
if the equation

a1v1 + a2v2 + ...+ anvn = 0,

has at least one solution with ai ̸= 0.

Exemple 3.4 Consider the vectors in R3: u1 = (1, 1, 0), u2 = (0, 1, 1), and
u3 = (1, 2, 1). Let’s show that they are linearly dependent:

a1u1 + a2u2 + a3u3 = a1(1, 1, 0) + a2(0, 1, 1) + a3(1, 2, 1)

= (0, 0, 0)

⇒


a1 + a3 = 0

a1 + a2 + 2a3 = 0

a2 + a3 = 0

⇒

{
a1 = −a3

a2 = −a3

So, the family u1, u2, u3 is linearly dependent (It can be noticed that u3 = u1+u2,
which implies that the family u1, u2, u3 is linearly dependent).

Définition 3.5 Let E be a K-vector space, and v1, v2, ..., vn, n vectors in E.
Any expression of the form

α1v1 + α2v2 + ...+ αnvn,

where α1, α2, ..., αn ∈ K are the coefficients, is called a linear combination of
the vectors v1, v2, ..., vn.

3



L
1-
ST

20
23
-2
02
4

4 Bases and dimension of a vectorial space

Définition 4.1 A family v1, v2, ..., vn is said to be generating for E if and only
if

∀v ∈ E,∃αi ∈ K such that v = α1v1 + α2v2 + ...+ αnvn,

that is:

E = {
n∑

i=1

αivi/αi ∈ K},

and we haveécrit, E = lin{v1, v2, ..., vn} or E = V ect{v1, v2, ..., vn}.

Exemple 4.2 Let E = {(x+ y, y − 3x, x) ∈ R3|x, y ∈ R}.
For u ∈ E ⇒ u = (x + y, y − 3x, x) = (x,−3x, x) + (y, y, 0) = x(1,−3, 1) +
y(1, 1, 0).
So {(1,-3,1),(1,1,0)} is a generating family for E. E.

Définition 4.3 A base of a vector space E is any family that is both linearly
independent and generating for E.

Exemple 4.4 The family e1, e2, e3 with e1 = (1, 0, 0)), e2 = (0, 1, 0), e3 = (0, 0, 1)
is a basis for R3. We have already shown that it is linearly independent. Let’s
now show that it is generating:
For u ∈ R3 we have: u = (x, y, z) = (x, 0, 0) + (0, y, 0) + (0, 0, z) = x(1, 0, 0) +
y(0, 1, 0) + z(0, 0, 1).
Therefore, e1, e2, e3 is a generating family for R3. Thus, it is a basis for R3 and
is called the canonical basis of R3.

Définition 4.5 If e1, e2, ..., en is a basis for the vector space E, then E is of
finite dimension n. We denote it as dimE = n. By convention, dim0E = 0.

5 Linear application

Let E and F be two K-vectorial spaces.

Définition 5.1 A linear map T from E to F is defined as linear if and only if:

∀u, v ∈ E,∀α, β ∈ K : T (αu+ βv) = αT (u) + βT (v).

Exemple 5.2 T : R2 −→ R2 a map defined by T (x, y) = (x + y, x − y). T is
linear. Indeed, let u = (x, y), v = (x′, y′) ∈ R2 and let α, β ∈ R:

T (αu+ βv) = T (α(x, y) + β(x′, y′)) = T (αx+ βx′, αy + βy′).

= (αx+ βx′ + αy + βy′, αx+ βx′ − αy − βy′).

= (α(x+ y) + β(x′ + y′), α(x− y) + β(x′ − y′)).

= (α(x+ y), α(x− y)) + (β(x′ + y′), β(x′ − y′)).

= α(x+ y, x− y) + β(x′ + y′, x′ − y′) = αT (x, y) + βT (x′, y′) = αT (u) + βT (v).
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Proposition 5.3 If T from E to F is a linear map, then:
1. ∀u ∈ E : T (−u) = −T (u).
2. T (0E) = 0F .

Définition 5.4 Let T : E −→ F be a linear map. The kernel of T , denoted as
ker(T ), is defined as

kerT = {u ∈ E; T (u) = 0F } .

Définition 5.5 Let T : E −→ F be a linear map. The image of T , denoted as
Im(T ), is defined as

ImT = {v ∈ F ; v = T (u) avec u ∈ E} = T (E) .

Proposition 5.6 Let T : E −→ F be a linear map. Then, ker(T ) is a subspace
of E, and Im(T ) is a subspace of F .

Theorem 5.7 Let T : E −→ F a linear application, then:
1. T is injective ⇐⇒ kerT = {0E} .
2. T is surjective ⇐⇒ ImT = F.

Theorem 5.8 (Kernel-Image Theorem) Let T : E −→ F be a linear map,
with dimE = n (finite), then

dimE = dimkerT + dimImT.

Proposition 5.9 If T : E −→ F is linear and dimE = dimF = n, then the
following properties are equivalent:

� T is bijective.

� T is injective.

� T is surjective.

6 Rank of a linear map

Définition 6.1 (Rank of a linear map) Let T : E −→ F be a linear map.
The rank of T is defined as the dimension of Im(T ). It is denoted as

rg(T ) = dim(Im(T )) = dim(T (E)).rg(T ) = dim(Im(T )) = dim(T (E)).
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