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1 Vectorial Spaces \X

Définition 1.1 Let K=R or C, and E be a s %ped with two rules laws,

one denoted by @ (internal) and the other de ® (external), defined by:”
®:ExFE—F R:EXK-—F

FE is called a vector space over K, and i %oted as K.v.s zf and only if:

I.udv=v®u (for allu,v € E)
Lud (vdw)=(udv) Dw (fi ,U,w € E).

. There exists a neutral ele OE € FE such that u®0g = u for allu € E.

N~ L

. Bvery uw € E has a sy / element u' such that uw ® v = 0g. This
element u’ is noted —

v

. VueF:1®u=u.

/
6. Yu € E,Va,b € @b ®u) = (a.b) ®u (. denotes the usual multiplica-

tion,).

7. Yu € ENa,beK: (a+b)@u=(a®u)® (bRu) (+ denotes the usual
addition).

8 Vu,ve EVaeK:a® (udv)=(a®@u)®(a®v).
The elements of E are called vectors, and the elements of K are called scalars
Exemple 1.2 We equip R? with the following two rules of computation:
V(z,y), (2',y) €R?: (z,9) + (2',y) = (¢ + 2",y + )

and
Y(z,y) € R Va e R: a.(z,y) = (ax, ),



where + and - represent the usual addition and multiplication, respectively.
Equipped with these two operations, (R?,+,-) forms an R-vector space.
More generally, for R™ with the rules:

(x173327 7xn) + (ylay27 7yn) = (:171 + Y1, T2 +y27 vy Ty + yn)

and The operation defined by o (x1, z2, ..., ) = (x1, aZa, ..., axy,) constitutes
an R-vector space.

Proposition 1.3 Let (E,®,®) be a K-vector space.
1. Yue E, 0®u = 0g (where Og s the neutral element of E).
2. VaeK:a®0g =0g

3. VaEK,VuGE:a@(u)(a)@u?;@M

4. VYaeRKVYueF . a®u=0<a=0 ou u

2 Vectorial subspaces /

Définition 2.1 A non-empty subset F' vector space E, equipped with the
rules + and -, is a vector subspace of<L~ e denote it as F v.s. of F if and
only if:

1. F#10. Q)

2. Yu,v € F,\Va, € K: au v € F.

Exemple 2.2 Let’s show t%
By ={(g.Yy,2) eER¥/z+y—2=0}
1s a vectorial subspacejof R
1. B, #0, becauseNO) e Ey.
2. Yu = (x,y,2) € Ey,Yo=(2/,y,2") € E1,V\, ueR:
A+ pv = Az + pa’, Ny + py’, Az + pz').
Or,

Az + pa’) + Ay +py') — Az +p2') = Ma +y —2) + pla’ +y - 2) = 0.

=0 =0

because u = (x,y,2) € By etv=(2',y',2) € E1 = A+ pv € Ey.
Conclusion: E; is a vectorial subspace of R3.

Proposition 2.3 FEvery vectorial subspace of a K-vector space E contains Op.



3 Linearly independent family, linearly depen-
dent family

Définition 3.1 n non-zero vectors vy, vs,...,v, in E are linearly independent

(free) if and only if
Yay,as,...,an € K: (a1v1 + agve + ... + apv, =0) = (a1 = a2 = ... = a, =0).

Exemple 3.2 Consider the vectors in R3: e; = (1,0,0), e2 = (0,1,0), and
es = (0,0,1). Let’s show that they are linearly independent:

ajeq + ag€2 + ases — a1(170, O) + GQ(O, 1,0) + a3(0, 0, ].)

=(0,0,0) = @

Thus, the family e, es, e3 is linearly mdepen%
Définition 3.3 n wvectors vy, va, ..., v, in@f’e linearly dependent if and only

if the equation
a1v1 + a2 t%n’vn = 0,
3

has at least one solution with a; #

Exemple 3.4 Consider the vectors i cup = (1,1,0), ug = (0,1,1), and

ug = (1,2,1). Let’s show that &zm linearly dependent:
a

a1uy + asuz + ag — (15170)—1_0/2(0’1)1)+a3(172a 1)
2(0,0,0)

/
§ a1 + as =0
\) a1 +as+2a3 =0
az + as =0
:>{a1 = —as
a9 = —das

So, the family uy, ua, us is linearly dependent (It can be noticed that us = uj+us,
which implies that the family uy,us,us is linearly dependent).

Définition 3.5 Let E be a K-vector space, and vy,vs,...,v,, n vectors in E.
Any expression of the form

a1U1 + QU2 + ... + QpUp,

where a1, asg,...,an, € K are the coefficients, is called a linear combination of
the vectors vy, va, ..., Up.-



4 Bases and dimension of a vectorial space

Définition 4.1 A family vy, va, ..., v, is said to be generating for E if and only

if

Vv € F,3Ja; € K such that v = ayv1 + agvg + ... + @, Uy,
that is:

n
E={)_ awi/o; €K},
i=1
and we haveéerit, E = lin{vy, va, ...,vn} or E = Vect{vy,va, ..., o5}

Exemple 4.2 Let E = {(z +y,y — 3z,7) € R*|x,y € R}.

Forue E=u=(zx+y,y—3x,2) = (z,-3z,2)¢ (v,9,0) = z(1,-3,1) +
y(1,1,0). \X

So {(1,-3,1),(1,1,0)} is a generating family for E\NR.

independent and generating for E.

Définition 4.3 A base of a vector space E i@\}%fcxmﬂy that is both linearly

Exemple 4.4 The family e, es, e3 with e ,0,0)),es = (0,1,0),e3 = (0,0,1)
is a basis for R3. We have already sho % it 4s linearly independent. Let’s
now show that it is generating: %

For u € R3 we have: u = (z,y,2) = %

y(0,1,0) + 2(0,0,1).
Therefore, e1, ea, €3 is a generating %y for R3. Thus, it is a basis for R® and
1s called the canonical basis of

+(0,9,0) +(0,0,2) = z(1,0,0) +

Définition 4.5 If e1,eo, ..., 6, is W basis for the vector space E, then E is of
finite dimension n. We den% as dimFE = n. By convention, dimOg = 0.

/
5 Linear applib&;ion

Let F and F' be two Morial spaces.

Définition 5.1 A linear map T from E to F is defined as linear if and only if:
Vu,v € E,Va, f € K: T(ou+ pv) = oT(u) + T (v).
Exemple 5.2 T : R? — R? a map defined by T(z,y) = (x +y,x —vy). T is
linear. Indeed, let u = (x,y),v = (2',y') € R? and let o, B € R:
T(au+ pv) =T((z,y) + B(a",y)) = T(ax + Ba’,ay + By').

= (az + B2’ + ay + By, ax + Bz’ — ay — By').
(@ +y) + 8" +¢),ale —y) + B=" —¢)).
(@ +y), oz —y))+ (B(" +y), B — ).

= (a
= (a
=az+y,z—y)+ 6" +y,2" —y) =al(z,y) + BT (z",y') = oT(u) + ST (v).



Proposition 5.3 If T from E to F is a linear map, then:
1.Vu € E:T(—u) =-T(u).
2. T(Og) = 0p.

Définition 5.4 Let T : E — F be a linear map. The kernel of T, denoted as
ker(T), is defined as

kerT ={u € E; T(u) =0p}.

Définition 5.5 Let T : E — F be a linear map. The image of T, denoted as
Im(T), is defined as

ImT={veF; v= T(u) avecuc E} =T (E).

Proposition 5.6 LetT : E — F be a linear map \Lhen, ker(T) is a subspace

of E, and Im(T) is a subspace of F. C\]

Theorem 5.7 Let T : E — F a linear appli, then:
1. T is injective < kerT = {0g}. C\]

2. T is surjective <= ImT = F.

/
Theorem 5.8 (Kernel-Image Theor, C}:)et T:E — F be a linear map,
with dimE = n (finite), then %

dimE = d@?—l— dimImT.

Proposition 5.9 If T : E — /" is linear and dimE = dimF = n, then the
following properties are equivalent:

o T is bijective.

o T is injective.

;\{
o T is surjective. ,\)

6 Rank of a linear map

Définition 6.1 (Rank of a linear map) Let T : E — F be a linear map.
The rank of T is defined as the dimension of Im(T). It is denoted as

rg(T) = dim(Im(T)) = dim(T(E)).rg(T) = dim(Im(T)) = dim(T(E)).



