Exercise 1 (07 pts).

1. Find the real parameters a and b such that : $\forall x \in \mathbb{R}, \quad x^{2}-2 x+2=(x+a)^{2}+b$.
2. Determine all the primitives of the function defined by: $\forall x \in \mathbb{R}, f(x)=\frac{1}{x^{2}-2 x+2}$.
3. Solve the following differential equation: $x u^{\prime}=u^{2}-2 u+2$.
4. Deduce the solution of the following system:

$$
\left\{\begin{array}{l}
x^{2} y^{\prime}=2 x^{2}-x y+y^{2} \\
y(1)=1
\end{array}\right.
$$

Exercise $2(05 \mathrm{pts})$. Let n be a natural number. Knowing that for all t in a neighborhood of 0 and for all $\alpha \in \mathbb{Q}, \quad(1+t)^{\alpha}=1+\alpha t+\frac{\alpha(\alpha-1)}{2} t^{2}+\cdots+\frac{\alpha(\alpha-1) \cdots(\alpha-(n-1))}{n!} t^{n}+o\left(t^{n}\right)$:

1. Determine the asymptotic expansion of order two in a neighborhood of 0 of $\sqrt{1+x^{2}}$.
2. Deduce $\lim _{x \rightarrow 0} \frac{1-\sqrt{1+x^{2}}}{x^{2}-1+\sqrt{1+x^{2}}}$

Exercise 3 (08 pts).
I. Let A be the matrix defined by

$$
A=\left(\begin{array}{ccc}
1 & 0 & 2 \\
2 & 1 & 4 \\
-1 & -1 & -4
\end{array}\right)
$$

1. Calculate the comatrix of A.
2. Is A an invertible matrix. If yes, determine its inverse A^{-1}.
II. For all $m \in \mathbb{R}$, we consider the following system

$$
\begin{cases}x_{1}+2 x_{3} & =4 \tag{1}\\ 2 x_{1}+m x_{2}+4 x_{3} & =8-m \\ -x_{1}-m x_{2}+\left(m^{2}-3 m-2\right) x_{3} & =4\end{cases}
$$

1. Write the matrix form of the system (1).
2. For which values of the parameter m the system (1) is Cramerian.
3. Solve the system (1) when $m=1$.

■ Exercise 1 (07 pts).

1. (01 pts)Find the real parameters a and b such that: $\forall x \in \mathbb{R}, \quad x^{2}-2 x+2=(x+a)^{2}+b$. $\forall x \in \mathbb{R}$,

$$
\begin{aligned}
x^{2}-2 x+2 & =x^{2}-2 x+1-1+2 \\
& =(x-1)^{2}+1 .
\end{aligned}
$$

Then, by identification, we conclude that $a=-1$ and $b=1$.
2. (01.50 pts) Determine all the primitives of the function defined by: $\forall x \in \mathbb{R}, f(x)=$ $\frac{1}{x^{2}-2 x+2}$.
$\forall x \in \operatorname{dom} f$,

$$
\begin{aligned}
\int f(x) \mathrm{d} x & =\int \frac{\mathrm{d} x}{x^{2}-2 x+2} \\
& =\int \frac{\mathrm{d} x}{(x-1)^{2}+1} \\
& =\left\langle\begin{array}{c}
u=x-1 \\
\mathrm{~d} u=\mathrm{d} x
\end{array}\right\rangle \\
& =\int \frac{\mathrm{d} u}{u^{2}+1}
\end{aligned}
$$

Hence, the primitives of f are the functions F, s.t., $\forall x \in \operatorname{dom} f, \quad F(x)=\arctan (x-1)+$ C where $C \in \mathbb{R}$ is an integration constant.
3. (02 pts) Solve the following differential equation: $x u^{\prime}=u^{2}-2 u+2$.
$\forall x \in \operatorname{dom} u$,

$$
x u^{\prime}=u^{2}-2 u+2 \Longleftrightarrow \frac{u^{\prime}}{u^{2}-2 u+2}=\frac{1}{x},
$$

then, the equation above is a separable variable equation, and we have

$$
\int \frac{\mathrm{d} u}{u^{2}-2 u+2}=\int \frac{\mathrm{d} x}{x}
$$

Using the second question we obtain that

$$
\arctan (u-1)=\ln |x|+\mathrm{C}^{\mathrm{te}} .
$$

Consequently, the general solution of the equation $x u^{\prime}=u^{2}-2 u+2$ is

$$
u=\tan \left(\ln |x|+\mathrm{C}^{\mathrm{te}}\right)+1 .
$$

4. (02.50 pts) Deduce the solution of the following system:

$$
\left\{\begin{array}{l}
x^{2} y^{\prime}=2 x^{2}-x y+y^{2} \tag{S}\\
y(1)=1
\end{array}\right.
$$

Begin by solving the equation

$$
\begin{equation*}
x^{2} y^{\prime}=2 x^{2}-x y+y^{2} . \tag{E}
\end{equation*}
$$

$\forall x \in \operatorname{dom} y$,

$$
\begin{align*}
(\mathrm{E}) \Longleftrightarrow y^{\prime} & =\frac{2 x^{2}-x y+y^{2}}{x^{2}} \\
& =2-\frac{y}{x}+\left(\frac{y}{x}\right)^{2} \tag{E1}
\end{align*}
$$

Thus, (E) is a homogeneous equation.
Using the substitution $u=y / x, y^{\prime}=x u^{\prime}+u$ in the equation (E1), we get

$$
x u^{\prime}=2-2 u+u^{2} .
$$

From the last question, the general solution of the equation above is

$$
u=\tan \left(\ln |x|+\mathrm{C}^{\mathrm{te}}\right)+1 .
$$

Replacing the value of u in the equation above gives

$$
\frac{y}{x}=\tan \left(\ln |x|+\mathrm{C}^{\mathrm{te}}\right)+1
$$

then, the general solution of the equation (E) is

$$
y=x \tan \left(\ln |x|+\mathrm{C}^{\mathrm{te}}\right)+x
$$

Since $y(1)=1$, and by assigning the value of 1 to x the expression above, we get

$$
\begin{aligned}
y(1) & =\tan \left(\ln |1|+\mathrm{C}^{\mathrm{te}}\right)+1 \\
& =\tan \mathrm{C}^{\mathrm{te}}+1
\end{aligned}
$$

then, $\mathrm{C}^{\text {te }}=0$. Hence, the solution of the system (S) is $y=x \tan (\ln |x|)+x .00 .50 \mathrm{pts}$
■ Exercise $2(05 \mathrm{pts})$. Let n be a natural number. Knowing that for all t in a neighborhood of 0 and for all $\alpha \in \mathbb{Q}, \quad(1+t)^{\alpha}=1+\alpha t+\frac{\alpha(\alpha-1)}{2} t^{2}+\cdots+\frac{\alpha(\alpha-1) \cdots(\alpha-(n-1))}{n!} t^{n}+o\left(t^{n}\right)$:

1. (02 pts) Determine the asymptotic expansion of order two in a neighborhood of 0 of $\sqrt{1+x^{2}}$.

For all x in a neighborhood of 0 , we have

$$
\sqrt{1+x^{2}}=1+\frac{x^{2}}{2}+o\left(x^{2}\right)
$$

2. (03 pts) Deduce $\lim _{x \rightarrow 0} \frac{1-\sqrt{1+x^{2}}}{x^{2}-1+\sqrt{1+x^{2}}}$

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{1-\sqrt{1+x^{2}}}{x^{2}-1+\sqrt{1+x^{2}}} & =\lim _{x \rightarrow 0} \frac{1-\left(1+\frac{x^{2}}{2}+o\left(x^{2}\right)\right)}{x^{2}-1+\left(1+\frac{x^{2}}{2}+o\left(x^{2}\right)\right)} \\
& =\lim _{x \rightarrow 0} \frac{-\frac{x^{2}}{2}+o\left(x^{2}\right)}{\frac{3 x^{2}}{2}+o\left(x^{2}\right)} \\
& =\lim _{x \rightarrow 0} \frac{-\frac{1}{2}+o(1)}{\frac{3}{2}+o(1)} \\
& =-\frac{1}{3} .
\end{aligned}
$$

- Exercise 3 (08 pts).
I. (04 pts) Let A be the matrix defined by

$$
A=\left(\begin{array}{ccc}
1 & 0 & 2 \\
2 & 1 & 4 \\
-1 & -1 & -4
\end{array}\right)
$$

1. (01.50 pts) Calculate the comatrix of A.

$$
\operatorname{Com} A=\left(\begin{array}{ccc}
0 & 4 & -1 \\
-2 & -2 & 1 \\
-2 & 0 & 1
\end{array}\right)
$$

2. (02.50 pts) Is A an invertible matrix. If yes, determine its inverse A^{-1}.

- (01 pts) Is A an invertible matrix.

$$
\begin{aligned}
\operatorname{det} A & =\left|\begin{array}{ccc}
1 & 0 & 2 \\
2 & 1 & 4 \\
-1 & -1 & -4
\end{array}\right| \\
& =\left|\begin{array}{ccc}
1 & 0 & 2 \\
1 & 0 & 0 \\
-1 & -1 & -4
\end{array}\right| \\
& =-2 .
\end{aligned}
$$

Since $|A| \neq 0$, then A is invertible.

- (01.50 pts) Determine its inverse A^{-1}.

$$
\begin{aligned}
A^{-1} & =\frac{1}{|A|}(\operatorname{Com} A)^{T} \\
& =-\frac{1}{2}\left(\begin{array}{ccc}
0 & -2 & -2 \\
4 & -2 & 0 \\
-1 & 1 & 1
\end{array}\right) .
\end{aligned}
$$

II. (04 pts) For all $m \in \mathbb{R}$, we consider the following system

$$
\begin{cases}x_{1}+2 x_{3} & =4 \tag{1}\\ 2 x_{1}+m x_{2}+4 x_{3} & =8-m \\ -x_{1}-m x_{2}+\left(m^{2}-3 m-2\right) x_{3} & =4\end{cases}
$$

1. (01.50 pts) Write the matrix form of the system (1).

The matrix form of the system (1) is

$$
\left(\begin{array}{ccc}
1 & 0 & 2 \\
2 & m & 4 \\
-1 & -m & m^{2}-3 m-2
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{c}
4 \\
8-m \\
4
\end{array}\right) .
$$

2. (01.50 pts) For which values of the parameter m the system (1) is Cramerian.

$$
\left|\begin{array}{ccc}
1 & 0 & 2 \\
2 & m & 4 \\
-1 & -m & m^{2}-3 m-2
\end{array}\right|=\left|\begin{array}{ccc}
1 & 0 & 2 \\
1 & 0 & m^{2}-3 m+2 \\
-1 & -m & m^{2}-3 m-2
\end{array}\right|=m^{2}(m-3) . \quad 00.50 \mathrm{pts}
$$

The system (1) is Cramerian iff $m^{2}(m-3) \neq 0$, i.e., $m \in \mathbb{R} \backslash\{0 ; 3\}$. 02×00.50 pts
3. (01 pts) Solve the system (1) when $m=1$.

For $m=1$ the system (1) is equivalent to

$$
\left(\begin{array}{ccc}
1 & 0 & 2 \\
2 & 1 & 4 \\
-1 & -1 & -4
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
4 \\
7 \\
4
\end{array}\right) .
$$

Since $m \in \mathbb{R} \backslash\{0 ; 3\}$, then the system above is Cramerian.
From the question I., the solution of the studying system is

$$
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=-\frac{1}{2}\left(\begin{array}{ccc}
0 & -2 & -2 \\
4 & -2 & 0 \\
-1 & 1 & 1
\end{array}\right)\left(\begin{array}{l}
4 \\
7 \\
4
\end{array}\right)=\left(\begin{array}{c}
11 \\
-1 \\
-7 / 2
\end{array}\right) .
$$

