Tutorial Series Number 2 - Math1

Exercise 1

In each of the following questions, we are given a set E and subsets A and B of E. Determine explicitly the sets $A \cap B, A \cup B, C_{E}(B)$, and $C_{E}(A) \cap B$.

1. $E=\{1,2,3,4\}, \quad A=\{1,2\}, \quad B=\{2,4\}$.
2. $E=\mathbb{R}, \quad A=]-\infty, 2], \quad B=[3,+\infty[$.

Exercise 2

Let A be a set, and X, Y, and Z be subsets of A. Prove the following properties:

1. $C_{E}((X \cup Y))=C_{E}(X) \cap C_{E}(Y)$
2. $X \subset Y \Leftrightarrow C_{E}(Y) \subset C_{E}(X)$

Exercise 3:

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=x^{2}$.
Find the following sets:
$f\left(\left[0,1[), \quad f(\mathbb{R}), \quad f(]-1,2[), \quad f^{-1}\left(\left[1,2[), \quad f^{-1}([-1,1]), \quad f^{-1}(\{3\})\right.\right.\right.\right.$.

Exercise 4

Are the following functions injective, surjective, or bijective?

1. f from \mathbb{R} to $\left[0,+\infty\left[\right.\right.$ defined by $f(x)=x^{2}$.
2. g from $\left[0,+\infty\left[\right.\right.$ to $\left[0,+\infty\left[\right.\right.$ defined by $g(x)=x^{2}$.

Exercise 5

Let h be the function from \mathbb{R} to \mathbb{R} defined by $h(x)=\frac{4 x}{x^{2}+1}$.

1. Verify that for any nonzero real number a, we have $h(a)=h\left(\frac{1}{a}\right)$. Is the function h injective?
2. Let f be defined on $I=[1,+\infty[$ by $f(x)=h(x)$.
(a) Show that f is injective.
(b) Verify that: $\forall x \in I, f(x) \leq 2$.
3. Show that f is a bijection from I to $] 0,2]$ and find f^{-1}.

A.Y: 2023-2024

Exercise 6: (Supp)

Let a, b, c, and d be given non-zero real numbers, and let g be defined as follows:

$$
\begin{aligned}
g: & \mathbb{R} \backslash\left\{x_{0}\right\} \rightarrow \mathbb{R} \backslash\left\{y_{0}\right\} \\
& x \longmapsto g(x)=\frac{a x+b}{c x+d}
\end{aligned}
$$

1. How should we choose the real number x_{0} for g to be a mapping?
2. How should we choose a, b, c, and d for g to be an injective mapping?
3. How should we choose a, b, c, d, and the real number y_{0} for g to be a surjective mapping?
4. How should we choose a, b, c, d, x_{0}, and y_{0} for g to be a bijective mapping?
