

L1-ST

A.Y: 2023-2024

Tutorial Series Number 2 - Math1

Exercise 1

In each of the following questions, we are given a set E and subsets A and B of E. Determine explicitly the sets $A \cap B, A \cup B, C_E(B)$, and $C_E(A) \cap B$.

- 1. $E = \{1, 2, 3, 4\}, \quad A = \{1, 2\}, \quad B = \{2, 4\}.$
- 2. $E = \mathbb{R}, \quad A =] \infty, 2], \quad B = [3, +\infty[.$

Exercise 2

Let A be a set, and X, Y, and Z be subsets of A. Prove the following properties:

1. $C_E((X \cup Y)) = C_E(X) \cap C_E(Y)$ 2. $X \subset Y \Leftrightarrow C_E(Y) \subset C_E(X)$

Exercise 3:

Let $f : \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^2$. Find the following sets: $f([0,1[), f(\mathbb{R}), f(]-1,2[), f^{-1}([1,2[), f^{-1}([-1,1]), f^{-1}(\{3\}).$

Exercise 4

Are the following functions injective, surjective, or bijective?

- 1. f from \mathbb{R} to $[0, +\infty)$ defined by $f(x) = x^2$.
- 2. g from $[0, +\infty)$ to $[0, +\infty)$ defined by $g(x) = x^2$.

Exercise 5

Let h be the function from \mathbb{R} to \mathbb{R} defined by $h(x) = \frac{4x}{x^2+1}$.

- 1. Verify that for any nonzero real number a, we have $h(a) = h\left(\frac{1}{a}\right)$. Is the function h injective?
- 2. Let f be defined on $I = [1, +\infty)$ by f(x) = h(x).
 - (a) Show that f is injective.
 - (b) Verify that: $\forall x \in I, f(x) \leq 2$.
- 3. Show that f is a bijection from I to [0,2] and find f^{-1} .

Exercise 6: (Supp)

Let a, b, c, and d be given non-zero real numbers, and let g be defined as follows:

$$g: \quad \mathbb{R} \setminus \{x_0\} \to \mathbb{R} \setminus \{y_0\}$$
$$x \longmapsto g(x) = \frac{ax+b}{cx+d}$$

- 1. How should we choose the real number x_0 for g to be a mapping?
- 2. How should we choose a, b, c, and d for g to be an injective mapping?
- 3. How should we choose a, b, c, d, and the real number y_0 for g to be a surjective mapping?
- 4. How should we choose a, b, c, d, x_0 , and y_0 for g to be a bijective mapping?