Real Functions of a Real Variable

University of Tlemcen
Faculty of Sciences

November 8, 2023

1 Generalities

1.1 Bounded Functions

Definition 1.1 We call a real function of a real variable any function from \mathbb{R} or a subset of \mathbb{R} to \mathbb{R}.
Definition 1.2 Let $f: X \subset \mathbb{R} \rightarrow \mathbb{R}$ and $E \subset$

1. f is bounded above in $E \Leftrightarrow \exists M \in \mathbb{R}^{\circ} \cdot \mathfrak{D}^{\prime} \in E: f(x) \leq M$.
2. f is bounded below in $E \Leftrightarrow \exists m \subset \mathbb{R}, \forall x \in E: f(x) \geq m$.
3. f is bounded in $E \Leftrightarrow \exists M, \exists m \in \mathbb{R}, \forall x \in E: m \leq f(x) \leq M$.

1.2 Monotone Functions

Definition 1.3 Let $f: E \subset \mathbb{R} \rightarrow \mathbb{R}$.

1. f is increasing in E if $\forall x, y \in E: x \leq y \Rightarrow f(x) \leq f(y)$.
2. f is strictly increasing in E if $\forall x, y \in E: x<y \Rightarrow f(x)<f(y)$.
3. f is decreasing in E if $\forall x, y \in E: x \leq y \Rightarrow f(x) \geq f(y)$.
4. f is strictly decreasing in E if $\forall x, y \in E: x<y \Rightarrow f(x)>f(y)$.
5. f is monotonic if it is increasing or decreasing.
6. f is strictly monotonic if it is strictly increasing or strictly decreasing.

1.3 Periodic Functions

Definition 1.4 Let $f: \mathbb{R} \rightarrow \mathbb{R}$. We say that f is periodic if:

$$
\exists T>0, \forall x \in \mathbb{R}: f(x+T)=f(x)
$$

1.4 Even-Odd Functions

Definition 1.5 Let $f: I \rightarrow \mathbb{R}$.

1. We say that f is even if $\forall x \in I: f(-x)=f(x)$.
2. We say that f is odd if $\forall x \in I: f(-x)=-f(x)$.

2 Algebraic Operations on Functions

Let $E \subset \mathbb{R}$ and let $f: E \rightarrow \mathbb{R}$ and $g: E \rightarrow \mathbb{R}$.

2.1 Sum

We define the sum of two functions f and g as $f+g$, denoted as:

$$
f+g: E \rightarrow \mathbb{R}, x \mapsto(f+g)(x)=f(x)+g(x)
$$

2.2 Scalar Product

Let $\lambda \in \mathbb{R}$. The function $\lambda \cdot f$ is defined as:

$$
\lambda \cdot f: E \rightarrow \mathbb{R}, x \mapsto(\lambda \cdot f)\}(x=\lambda \cdot f(x) .
$$

2.3 Product

We define the product of two funtions f and g as $f \cdot g$, denoted as:

2.4 Quotient

$$
f \cdot g: E \rightarrow \underset{\sim}{\mathbb{R}}, x \mapsto(f \cdot g)(x)=f(x) \cdot g(x) \text {. }
$$

If $\forall x \in E: g(x) \neq 0$, then $\frac{f}{g}$ is defined as:

$$
\frac{f}{g}: E \rightarrow \mathbb{R}, x \mapsto\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)}
$$

3 Limit of a Function at a Point

Let f be a function defined on an interval $I \subset \mathbb{R}$, and let $x_{0} \in I$. If $f(x)$ approaches l as x approaches x_{0}, we denote this as:

$$
\lim _{x \rightarrow x_{0}} f(x)=l .
$$

3.1 Properties

Proposition 3.1 If the limit of a function at a point exists, then it is unique, and

$$
\left(\lim _{x \rightarrow x_{0}} f(x)=l\right) \Leftrightarrow\left(\lim _{x \rightarrow x_{0}} f(x)=\lim _{x \rightarrow x_{0}} f(x)=l\right) .
$$

3.2 Properties

Theorem 3.2 Let f and g be two given functions. Then,

1. If $\left(\lim _{x \rightarrow x_{0}} f(x)=l_{1}\right.$ and $\left.\lim _{x \rightarrow x_{0}} g(x)=l_{2}\right)$, then $\left(\lim _{x \rightarrow x_{0}}(f(x)+g(x))=l_{1}+l_{2}\right)$.
2. If $\left(\lim _{x \rightarrow x_{0}} f(x)=l_{1}\right.$ and $\left.\lim _{x \rightarrow x_{0}} g(x)=l_{2}\right)$, then $\left(\lim _{x \rightarrow x_{0}}(f(x) \cdot g(x))=l_{1} \cdot l_{2}\right)$.
3. If $\left(\lim _{x \rightarrow x_{0}} f(x)=l_{1}\right.$ and $\left.\lim _{x \rightarrow x_{0}} g(x)=l_{2} \neq 0\right)$, then $\left(\lim _{x \rightarrow x_{0}}\left(\frac{f(x)}{g(x)}\right)=\frac{l_{1}}{l_{2}}\right)$.
4. If $\lim _{x \rightarrow x_{0}} f(x)=0$ and g is a bounded function, then $\lim _{x \rightarrow x_{0}} f(x) g(x)=0$.
5. (Squeeze Theorem) Let $a \in \mathbb{R}$ or $a=+\infty$ or $a=-\infty$.

If $\lim _{a} f(x)=l$ and $\lim _{a} g(x)=l$ and $f \leq h \leq g$, then $\lim _{a} h(x)=l$.
6. (Comparison Theorem)

$$
\begin{aligned}
& \text { If } \lim _{+\infty} f(x)=+\infty \text { and } g \geq f \text {, then } \lim _{+\infty} g(x)=+\infty . \\
& \text { If } \lim _{+\infty} f(x)=-\infty \text { and } g \leq f \text {, then } \operatorname{lnnn}_{+\infty} g(x)=-\infty .
\end{aligned}
$$

4 Continuity

Definition 4.1 Let f be a function aterned at a point x_{0}.

1. We say that f is right-contintous at x_{0} if $\lim _{\substack{x \rightarrow x_{0} \\>}} f(x)=f\left(x_{0}\right)$.
2. We say that f is lecqutinuous at x_{0} if $\lim _{x \rightarrow x_{0}} f(x)=f\left(x_{0}\right)$.
3. We say that f is continuous at x_{0} if

$$
\lim _{x \rightarrow x_{0}} f(x)=\lim _{x \rightarrow x_{0}} f(x)=\lim _{x \rightarrow x_{0}}^{\substack{<}} \mid \text {. } f(x)=f\left(x_{0}\right) .
$$

4. f is continuous on an interval $I \subset \mathbb{R}$ if it is continuous at every point in 1 .

4.1 Operations on Continuous Functions

Let f and g be two functions defined on an interval I, and let a be a real number in I. If functions f and g are continuous at a, then:

1. λ. f is continuous at $a(\lambda \in \mathbb{R})$.
2. $f+g$ is continuous at a (the same applies to subtraction).
3. $f \cdot g$ is continuous at a.
4. $\frac{f}{g}$ is continuous at a if $g(a) \neq 0$ and is undefined at a if $g(a)=0$.
5. If a function g is continuous at point a and a function f is continuous at $g(a)$, then $f \circ g$ is continuous at a.

4.2 Continuity Extension

Let I be an interval, and $x_{0} \in I$. If f is a function defined on $I \backslash\left\{x_{0}\right\}$, and $\lim _{x \rightarrow x_{0}} f(x)=l$ exists, then the function g defined as

$$
g(x)=\left\{\begin{array}{c}
f(x) \text { if } x \neq x_{0} \\
l \text { if } x=x_{0}
\end{array}\right.
$$

is called the continuity extension of f at x_{0}. The function g is then continuous at x_{0}.

4.3 Intermediate Value Theorem

Theorem 4.2 If f is a continuous function orरan interval $[a, b]$ with $f(a)$. $f(b)<0$, then there exists $\alpha \in] a, b[$ such that $f(\alpha)=0$. Furthermore, if f is strictly monotonic on $[a, b]$, then α is uniqua,

4.4 Strictly Monotonic Continuous Function

Let I be an interval in \mathbb{R}, and det \mathcal{X} be a function defined on I, continuous and strictly monotonic. In this case, the following properties hold:

1. f is a bijective function from I to $f(I)$.
2. The inverse function $f^{-1}: f(I) \rightarrow I$ is continuous and strictly monotonic, following the same nature as f (if f is strictly increasing, then f^{-1} is also, and if f is strictly decreasing, then f^{-1} is as well).
3. The graphs of f and f^{-1} are symmetric with respect to the first bisector $y=x$.

5 Differentiation

5.1 Definitions

Let $f: I \rightarrow \mathbb{R}$ be a function defined on an interval $I \subset \mathbb{R}$.

1. We say that f is differentiable at a point $x_{0} \in I$ if and only if the following limit exists and is finite:

$$
\begin{equation*}
\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}=l \tag{1}
\end{equation*}
$$

and we denote in this case $l=f^{\prime}\left(x_{0}\right)$, called the derivative of f at point x_{0}.
2. If we replace x with $x_{0}+h$ in the limit (1), then as x approaches x_{0}, h approaches 0 , and we obtain:

$$
\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}=f^{\prime}\left(x_{0}\right) .
$$

3. We say that f is differentiable over I if and only if f is differentiable at every point in I.
4. If f is differentiable over I, we can define a new function called the derivative, denoted as f^{\prime}, which, at each point x_{0} in I, associates the derivative $f^{\prime}\left(x_{0}\right)$.
5. Geometric interpretation: The tangent line to the curve representing f at a point $\left(x_{0}, f\left(x_{0}\right)\right)$ has a slope equal to $f^{\prime}\left(x_{0}\right)$ and can be represented by the equation:
6.

$$
y=f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+ك\left(x_{0}\right)
$$

7.

f is differentiable at $x_{0} \Leftrightarrow \lim _{x \rightarrow x} \xrightarrow{f-x_{0}}=\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}=f^{\prime}\left(x_{0}\right)$. f is differatiable at $x_{0} \Rightarrow f$ is continuous at x_{0}.

5.2 Derivative Rules

If f and g are two differentiable functions, then the following rules apply:

1. $(f+g)^{\prime}=f^{\prime}+g^{\prime}$.
2. $(f \cdot g)^{\prime}=f^{\prime} g+f g^{\prime}$.
3. $\left(\frac{f}{g}\right)^{\prime}=\frac{f^{\prime} g-f g^{\prime}}{g^{2}}$.
4. $\left(f^{\alpha}\right)^{\prime}=\alpha f^{\prime} f^{\alpha-1}$.
5. We denote, when they exist, $f=f^{(0)}, f^{\prime}=f^{(1)}, f^{\prime \prime}=f^{(2)} \ldots f^{(n)}=$ $\left[f^{(n-1)}\right]^{\prime}$, and $f^{(n)}$ is called the $\mathrm{n}^{\text {th }}$ derivative of f.
6. If f is differentiable over I and g is differentiable over $f(I)$, then $(g \circ f)$ is differentiable over I, and we have the derivative rule:

$$
(g \circ f)^{\prime}=f^{\prime} \cdot\left(g^{\prime} \circ f\right)
$$

7. If f is strictly monotonic and differentiable over I, then its reciprocal function f^{-1} is differentiable over $f(I)$, and we have the derivative rule:

$$
\left(f^{-1}\right)^{\prime}=\frac{1}{f^{\prime} \circ f^{-1}}
$$

5.3 Some Theorems

Theorem 5.1 Rolle's Theorem

Let f be a function that is continuous on $[a, b]$, differentiable on $] a, b[$, and such that $f(a)=f(b)$, then:

$$
\exists c \in] a, b\left[; \quad f^{\prime}(c)=0\right.
$$

Theorem 5.2 Mean Value Theorem
Let f be a function that is continuous on $[a, b]$, and differentiable on $] a, b[$, then:

$$
\exists c \in] a, b\left[; \quad f(b)-f(a)=f^{\prime}(c)(b-a) .\right.
$$

Proposition 5.3 Let f be a function that is continuous on $[a, b]$, and differentiable on $] a, b[$, then f is increasing (or decreasing) and only if its derivative f^{\prime} is positive (or negative).

Theorem 5.4 L'Hôpital's Rule
Let f and g be two functions that are continuous on an interval $I \subset \mathbb{R}$, except possibly at the point $x_{0} \in I$. If $f\left(x_{0}\right)=g\left(x_{0}\right)=0$ and $g^{\prime}(x) \neq 0$ for all $x \in I \backslash\left\{x_{0}\right\}$, and if $\lim _{x \rightarrow x_{0}} \frac{f^{\prime}(x)}{g^{\prime}(x)}$ ती, then:

$$
\lim _{x \rightarrow x_{0}} \frac{f(x)}{g(x)}=l
$$

5.3.1 Elementary Reciprocal Functions

1. The function

$$
\begin{array}{r}
f:\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \longrightarrow[-1,1] \\
x \mapsto f(x)=\sin (x)
\end{array}
$$

is strictly increasing, therefore bijective and has an inverse function denoted as arcsin. Hence,

$$
\begin{aligned}
\arcsin :[-1,1] & \left.\longrightarrow-\frac{\pi}{2}, \frac{\pi}{2}\right] \\
x & \mapsto f(x)=\arcsin (x)
\end{aligned}
$$

with the property

$$
\forall x \in[-1,1], \quad\left(y=\arcsin (x) \Longleftrightarrow x=\sin (y) \text { and } y \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]\right)
$$

Also,
$\arcsin (\sin (x))=x ; \quad \forall x \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ and $\sin (\arcsin (x))=x ; \quad \forall x \in[-1,1]$.
2. The function

$$
\begin{aligned}
& f:[0, \pi] \longrightarrow[-1,1] \\
& \quad x \mapsto f(x)=\cos (x)
\end{aligned}
$$

is strictly decreasing, therefore bijective and has an inverse function denoted as arccos. Hence,

$$
\begin{aligned}
\arccos :[-1,1] & \longrightarrow[0, \pi] \\
x & \mapsto f(x)=\arccos (x)
\end{aligned}
$$

with the property

Also,

3. The function

is strictly increasing, therefore bijective and has an inverse function denoted as $\arctan (x)$. Hence,

$$
\begin{aligned}
\arctan (x): \mathbb{R} & \longrightarrow]-\frac{\pi}{2}, \frac{\pi}{2}[\\
x & \mapsto f(x)=\arctan (x)
\end{aligned}
$$

with the property

$$
\forall x \in \mathbb{R}, \quad(y=\arctan (x) \Longleftrightarrow x=\tan (y) \operatorname{and} d y \in]-\frac{\pi}{2}, \frac{\pi}{2}[)
$$

Also,
$\arctan (\tan (x))=x ; \quad \forall x \in]-\frac{\pi}{2}, \frac{\pi}{2}[\operatorname{and} \tan (\arctan (x))=x ; \quad \forall x \in \mathbb{R}$.

