Real Functions of a Real Variable

University of Tlemcen Faculty of Sciences

November 8, 2023

Generalities 1

Bounded Functions 1.1

Definition 1.1 We call a real function of a real variable any function from \mathbb{R} or a subset of \mathbb{R} to \mathbb{R} .

Definition 1.2 Let $f: X \subset \mathbb{R} \to \mathbb{R}$ and $E \subset \mathbb{R}$ 1. f is bounded above in $E \subset \mathbb{R}$

- 1. f is bounded above in $E \Leftrightarrow \exists M \in \mathbb{R}$ $\forall x \in E : f(x) \le M$. 2. f is bounded below in $E \Leftrightarrow \exists m \in \mathbb{R}$, $\forall x \in E : f(x) \ge m$. 3. f is bounded in $E \Leftrightarrow \exists M \in \mathbb{R}$, $\exists m \in \mathbb{R}$, $\forall x \in E : m \le f(x) \le M$.

1.2Monotone Functions

Definition 1.3 Let $f : E \subset \mathbb{R} \to \mathbb{R}$.

- 1. f is increasing in E if $\forall x, y \in E : x \leq y \Rightarrow f(x) \leq f(y)$.
- 2. f is strictly increasing in E if $\forall x, y \in E : x < y \Rightarrow f(x) < f(y)$.
- 3. f is decreasing in E if $\forall x, y \in E : x \leq y \Rightarrow f(x) \geq f(y)$.
- 4. f is strictly decreasing in E if $\forall x, y \in E : x < y \Rightarrow f(x) > f(y)$.
- 5. f is monotonic if it is increasing or decreasing.
- 6. f is strictly monotonic if it is strictly increasing or strictly decreasing.

1.3**Periodic Functions**

Definition 1.4 Let $f : \mathbb{R} \to \mathbb{R}$. We say that f is periodic if:

$$\exists T > 0, \forall x \in \mathbb{R} : f(x+T) = f(x)$$

1.4**Even-Odd Functions**

Definition 1.5 Let $f : I \to \mathbb{R}$.

1. We say that f is even if $\forall x \in I : f(-x) = f(x)$.

2. We say that f is odd if $\forall x \in I : f(-x) = -f(x)$.

2 **Algebraic Operations on Functions**

Let $E \subset \mathbb{R}$ and let $f : E \to \mathbb{R}$ and $g : E \to \mathbb{R}$.

2.1Sum

We define the sum of two functions f and g as f + g, denoted as:

$$f+g: E \to \mathbb{R}, x \mapsto (f+g)(x) = f(x) + g(x).$$

2.2**Scalar Product**

Let $\lambda \in \mathbb{R}$. The function $\lambda \cdot f$ is defined as:

$$\lambda \cdot f : E \to \mathbb{R}, x \mapsto (\lambda \cdot f)(x) = \lambda \cdot f(x).$$

2.3 Product We define the product of two functions f and g as $f \cdot g$, denoted as:

$$f \cdot g : E \to \mathbb{R}, \mathfrak{p} \mapsto (f \cdot g)(x) = f(x) \cdot g(x).$$

2.4 Quotient

If $\forall x \in E : g(x) \neq 0$, then $\frac{f}{g}$ is defined as:

$$\frac{f}{g}: E \to \mathbb{R}, x \mapsto \left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$$

3 Limit of a Function at a Point

Let f be a function defined on an interval $I \subset \mathbb{R}$, and let $x_0 \in I$. If f(x)approaches l as x approaches x_0 , we denote this as:

$$\lim_{x \to x_0} f(x) = l$$

3.1**Properties**

Proposition 3.1 If the limit of a function at a point exists, then it is unique, and

$$\left(\lim_{x \to x_0} f(x) = l\right) \Leftrightarrow \left(\lim_{\substack{x \to x_0 \\ >}} f(x) = \lim_{\substack{x \to x_0 \\ <}} f(x) = l\right).$$

3.2**Properties**

Theorem 3.2 Let f and g be two given functions. Then, 1. If $\left(\lim_{x \to x_0} f(x) = l_1 \text{ and } \lim_{x \to x_0} g(x) = l_2\right)$, then $\left(\lim_{x \to x_0} (f(x) + g(x)) = l_1 + l_2\right)$. 2. If $\left(\lim_{x \to x_0} f(x) = l_1 \text{ and } \lim_{x \to x_0} g(x) = l_2\right)$, then $\left(\lim_{x \to x_0} (f(x) \cdot g(x)) = l_1 \cdot l_2\right)$. 3. If $\left(\lim_{x \to x_0} f(x) = l_1 \text{ and } \lim_{x \to x_0} g(x) = l_2 \neq 0\right)$, then $\left(\lim_{x \to x_0} \left(\frac{f(x)}{g(x)}\right) = \frac{l_1}{l_2}\right)$. 4. If $\lim_{x \to x_0} f(x) = 0$ and g is a bounded function, then $\lim_{x \to x_0} f(x)g(x) = 0$. 5. (Squeeze Theorem) Let $a \in \mathbb{R}$ or $a = +\infty$ or $a = -\infty$.

If
$$\lim_{a} f(x) = l$$
 and $\lim_{a} g(x) = l$ and $f \le h \le g$, then $\lim_{a} h(x) = l$.

6. (Comparison Theorem)

If
$$\lim_{+\infty} f(x) = +\infty$$
 and $g \ge f$, then $\lim_{+\infty} g(x) = +\infty$.
If $\lim_{+\infty} f(x) = -\infty$ and $g \le f$, then $\lim_{+\infty} g(x) = -\infty$.

Continuity 4

Definition 4.1 Let f be a function defined at a point x_0 .

- 1. We say that f is right-continuous at x_0 if $\lim_{\substack{x \to x_0 \\ >}} f(x) = f(x_0)$.
- 2. We say that f is left continuous at x_0 if $\lim_{x \to x_0} f(x) = f(x_0)$.
- 3. We say that f is continuous at x_0 if

$$\lim_{x \to x_0} f(x) = \lim_{\substack{x \to x_0 \\ >}} f(x) = \lim_{\substack{x \to x_0 \\ <}} f(x) = f(x_0).$$

4. f is continuous on an interval $I \subset \mathbb{R}$ if it is continuous at every point in Ι.

Operations on Continuous Functions 4.1

Let f and g be two functions defined on an interval I, and let a be a real number in I. If functions f and g are continuous at a, then:

- 1. λf is continuous at $a \ (\lambda \in \mathbb{R})$.
- 2. f + g is continuous at a (the same applies to subtraction).
- 3. $f \cdot g$ is continuous at a.

- 4. $\frac{f}{g}$ is continuous at a if $g(a) \neq 0$ and is undefined at a if g(a) = 0.
- 5. If a function g is continuous at point a and a function f is continuous at g(a), then $f \circ g$ is continuous at a.

4.2 Continuity Extension

Let I be an interval, and $x_0 \in I$. If f is a function defined on $I \setminus \{x_0\}$, and $\lim_{x \to x_0} f(x) = l$ exists, then the function g defined as

$$g(x) = \begin{cases} f(x) \text{ if } x \neq x_0 \\ l \text{ if } x = x_0 \end{cases}$$

is called the continuity extension of f at x_0 . The function g is then continuous at x_0 .

4.3 Intermediate Value Theorem

Theorem 4.2 If f is a continuous function of a interval [a,b] with $f(a) \cdot f(b) < 0$, then there exists $\alpha \in]a,b[$ such that $f(\alpha) = 0$. Furthermore, if f is strictly monotonic on [a,b], then α is unique

4.4 Strictly Monotonic Continuous Function

Let I be an interval in \mathbb{R} , and let Y be a function defined on I, continuous and strictly monotonic. In this case, the following properties hold:

- 1. f is a bijective function from I to f(I).
- 2. The inverse function $f^{-1}: f(I) \to I$ is continuous and strictly monotonic, following the same nature as f (if f is strictly increasing, then f^{-1} is also, and if f is strictly decreasing, then f^{-1} is as well).
- 3. The graphs of f and f^{-1} are symmetric with respect to the first bisector y = x.

5 Differentiation

5.1 Definitions

- Let $f: I \to \mathbb{R}$ be a function defined on an interval $I \subset \mathbb{R}$.
 - 1. We say that f is differentiable at a point $x_0 \in I$ if and only if the following limit exists and is finite:

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = l,$$
(1)

and we denote in this case $l = f'(x_0)$, called the derivative of f at point x_0 .

2. If we replace x with $x_0 + h$ in the limit (1), then as x approaches x_0 , h approaches 0, and we obtain:

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = f'(x_0).$$

- 3. We say that f is differentiable over I if and only if f is differentiable at every point in I.
- 4. If f is differentiable over I, we can define a new function called the derivative, denoted as f', which, at each point x_0 in I, associates the derivative $f'(x_0)$.
- 5. Geometric interpretation: The tangent line to the curve representing f at a point $(x_0, f(x_0))$ has a slope equal to $f'(x_0)$ and can be represented by the equation:

$$y = f'(x_0) (x - x_0) + f(x_0).$$

6.

7.

$$f$$
 is differentiable at $x_0 \Leftrightarrow \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = f'(x_0).$
 f is differentiable at $x_0 \Rightarrow f$ is continuous at x_0 .

5.2 Derivative Rules

If f and g are two differentiable functions, then the following rules apply:

1. (f+g)' = f' + g'. 2. $(f \cdot g)' = f'g + fg'$. 3. $\left(\frac{f}{g}\right)' = \frac{f'g - fg'}{g^2}$.

4.
$$(f^{\alpha})' = \alpha f' f^{\alpha - 1}$$
.

- 5. We denote, when they exist, $f = f^{(0)}$, $f' = f^{(1)}$, $f'' = f^{(2)}$... $f^{(n)} = [f^{(n-1)}]'$, and $f^{(n)}$ is called the nth derivative of f.
- 6. If f is differentiable over I and g is differentiable over f(I), then $(g \circ f)$ is differentiable over I, and we have the derivative rule:

$$(g \circ f)' = f' \cdot (g' \circ f) \,.$$

7. If f is strictly monotonic and differentiable over I, then its reciprocal function f^{-1} is differentiable over f(I), and we have the derivative rule:

$$(f^{-1})' = \frac{1}{f' \circ f^{-1}}$$

5.3Some Theorems

Theorem 5.1 Rolle's Theorem

Let f be a function that is continuous on [a, b], differentiable on [a, b], and such that f(a) = f(b), then:

$$\exists c \in]a, b[; f'(c) = 0.$$

Theorem 5.2 Mean Value Theorem

Let f be a function that is continuous on [a, b], and differentiable on [a, b], then:

$$\exists c \in]a, b[; f(b) - f(a) = f'(c) (b - a).$$

Proposition 5.3 Let f be a function that is continuous on [a, b], and differentiable on]a, b[, then f is increasing (or decreasing) and only if its derivative f' is positive (or negative).

Theorem 5.4 *L'Hôpital's Rule* Let f and g be two functions that are continuous on an interval $I \subset \mathbb{R}$, except possibly at the point $x_0 \in I$. If $f(x) = g(x_0) = 0$ and $g'(x) \neq 0$ for all $x \in I \setminus \{x_0\}$, and if $\lim_{x \to x_0} \frac{f'(x)}{g'(x)} = 0$, then:

$$\bigvee \lim_{x \to x_0} \frac{f(x)}{g(x)} = l$$

5.3.1**Elementary Reciprocal Functions**

1. The function

$$f: \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \longrightarrow \left[-1, 1\right]$$
$$x \mapsto f(x) = \sin(x)$$

is strictly increasing, therefore bijective and has an inverse function denoted as arcsin. Hence,

$$\operatorname{arcsin} : [-1, 1] \longrightarrow \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$$
$$x \mapsto f(x) = \operatorname{arcsin}(x)$$

with the property

$$\forall x \in [-1,1], \quad \left(y = \arcsin(x) \iff x = \sin(y) \text{ and } y \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]\right).$$

Also,

$$\arcsin(\sin(x)) = x; \quad \forall x \in [-\frac{\pi}{2}, \frac{\pi}{2}] \text{ and } \sin(\arcsin(x)) = x; \quad \forall x \in [-1, 1]$$

2. The function

$$f:[0,\pi] \longrightarrow [-1,1]$$
$$x \mapsto f(x) = \cos(x)$$

is strictly decreasing, therefore bijective and has an inverse function denoted as arccos. Hence,

$$\begin{aligned} \arccos: [-1,1] &\longrightarrow [0,\pi] \\ x &\mapsto f(x) = \arccos(x) \end{aligned}$$

with the property

$$\forall x \in [-1, 1], \quad (y = \arccos(x) \iff x \notin \cos(y) \text{ and } y \in [0, \pi]).$$
Also,

$$\arccos(\cos(x)) = x; \quad \forall x \in [0, \pi] \text{ and } \cos(\arccos(x)) = x; \quad \forall x \in [-1, 1].$$
3. The function

$$f: \left[-\frac{\pi}{2}, \frac{\pi}{2} \right[\longrightarrow \mathbb{R}$$

$$x \mapsto f(x) = \tan(x)$$

is strictly increasing, therefore bijective and has an inverse function denoted as $\arctan(x)$. Hence,

$$\arctan(x) : \mathbb{R} \longrightarrow \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$$

 $x \mapsto f(x) = \arctan(x)$

with the property

$$\forall x \in \mathbb{R}, \quad \left(y = \arctan(x) \iff x = \tan(y) \text{ and } y \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[\right).$$

Also,

$$\arctan(\tan(x)) = x; \quad \forall x \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[\operatorname{and} \tan(\arctan(x)) = x; \quad \forall x \in \mathbb{R}.$$