Les fonctions réelles d'une variable réelle

Université de Tlemcen Faculté des sciences

November 8, 2023

Généralités 1

Fonctions bornées

Définition 1.1 On appelle fonction réelle d'une variable réelle, toute fonction $de \mathbb{R}$ ou d'un sous ensemble $de \mathbb{R}$ vers \mathbb{R} .

- **Définition 1.2** Soit $f: X \subset \mathbb{R} \to \mathbb{R}$ et $E \subset X$ 1. f est majorée dans $E \Leftrightarrow \exists M \in \mathbb{R}, \forall x \in E: f(x) \leq M$.

 2. f est minorée dans $E \Leftrightarrow \exists m \in \mathbb{R}, \forall x \in E: f(x) \geq m$.

 3. f est bornée dans $E \Leftrightarrow \exists M \in \mathbb{R}, \exists m \in \mathbb{R}, \forall x \in E: m \leq f(x) \leq M$.

Fonctions monotones

Définition 1.3 *Soit* $f: E \subset \mathbb{R} \to \mathbb{R}$.

- 1. f est croissante dans E si $\forall x, y \in E : x \leq y \Rightarrow f(x) \leq f(y)$.
- 2. f est strictement croissante dans E si $\forall x, y \in E : x < y \Rightarrow f(x) < f(y)$.
- 3. f est décroissante dans E si $\forall x, y \in E : x \leq y \Rightarrow f(x) \geq f(y)$.
- 4. f est strictement décroissante dans E si $\forall x, y \in E : x < y \Rightarrow f(x) > f(y)$.
- 5. f est monotone si elle est croissante ou bien décroissante.
- 6. f est strictement monotone si elle est strictement croissante ou bien strictement décroissante.

Fonctions périodiques 1.3

Définition 1.4 Soit $f: \mathbb{R} \to \mathbb{R}$. On dit que f est périodique si:

$$\exists T > 0, \forall x \in \mathbb{R} : f(x+T) = f(x).$$

Fonctions paires-impaires

Définition 1.5 *Soit* $f: I \to \mathbb{R}$.

- 1. On dit que f est paire $si \ \forall x \in I, \forall -x \in I : f(-x) = f(x)$.
- 2. On dit que f est impaire si $\forall x \in I, \forall -x \in I : f(-x) = -f(x)$.

2 Opérations algèbriques sur les fonctions

Soit $E \subset \mathbb{R}$ et soient $f: E \to \mathbb{R}$ et $g: E \to \mathbb{R}$.

2.1Somme

On appelle somme de deux fonctions f et g et on note f+g, la fonction

$$f + g : E \to \mathbb{R}, x \mapsto (f + g)(x) = f(x) + g(x).$$

Produit par un scalaire

2.2 Produit par un scalaire
Soit
$$\lambda \in \mathbb{R}$$
. la fonction $\lambda . f$ est définie par
$$\lambda . f : E \to \mathbb{R}, x \mapsto (\lambda f)(x) = \lambda . f(x).$$
2.3 Produit

2.3 Produit
On appelle produit de deux fonctions
$$f$$
 et g et on note $f.g$, la fonction
$$f.g: \mathcal{K} \to \mathbb{R}, x \mapsto (f.g)(x) = f(x).g(x).$$

Quotient

Si $\forall x \in E : g(x) \neq 0$, alors $\frac{f}{g}$ est définie par

$$\frac{f}{g}: E \to \mathbb{R}, x \mapsto \left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}.$$

Limite d'une fonction en un point 3

Soit f une fonction définie sur un intervalle $I \subset \mathbb{R}$, et soit $x_0 \in I$. Si f(x) tend vers l quand x tend vers x_0 alors on notera dans ce cas

$$\lim_{x\to x_0} f(x) = l.$$

3.1**Propriétés**

Proposition 3.1 Si la limite d'une fonction en un point existe alors elle est unique, et

$$\Big(\lim_{x\to x_0}f(x)=l\Big) \Leftrightarrow \Big(\lim_{\substack{x\to x_0\\ >}}f(x)=\lim_{\substack{x\to x_0\\ >}}f(x)=l\Big).$$

3.2 **Propriétés**

Theorem 3.2 Soit f et g deux fonctions données alors

1. Si
$$\left(\lim_{x \to x_0} f(x) = l_1 \text{ et } \lim_{x \to x_0} g(x) = l_2\right)$$
 alors $\left(\lim_{x \to x_0} \left(f(x) + g(x)\right) = l_1 + l_2\right)$.
2. Si $\left(\lim_{x \to x_0} f(x) = l_1 \text{ et } \lim_{x \to x_0} g(x) = l_2\right)$ alors $\left(\lim_{x \to x_0} \left(f(x) \cdot g(x)\right) = l_1 \cdot l_2\right)$.

2.
$$Si\left(\lim_{x \to x_0} f(x) = l_1 \text{ et } \lim_{x \to x_0} g(x) = l_2\right) \text{ alors } \left(\lim_{x \to x_0} (f(x).g(x)) = l_1.l_2\right)$$

3. Si
$$\left(\lim_{x\to x_0} f(x) = l_1 \text{ et } \lim_{x\to x_0} g(x) = l_2 \neq 0\right) \text{ alors } \left(\lim_{x\to x_0} \left(\frac{f(x)}{g(x)}\right) = \frac{l_1}{l_2}\right)$$

4. Si
$$\lim_{x \to x_0} f(x) = 0$$
 et g est une fonction bornée alors $\lim_{x \to x_0} f(x)g(x) = 0$

3. Si $\left(\lim_{x\to x_0} f(x) = l_1 \text{ et } \lim_{x\to x_0} g(x) = l_2 \neq 0\right)$ alors $\left(\lim_{x\to x_0} \left(\frac{f(x)}{g(x)}\right) = \frac{l_1}{l_2}\right)$. 4. Si $\lim_{x\to x_0} f(x) = 0$ et g est une fonction bornée alors $\lim_{x\to x_0} f(x)g(x) = 0$. 5. (Théorème d'encadrement ou des gendarmes) Sit $a \in \mathbb{R}$ ou $a = +\infty$ ou $a = -\infty$

$$a=-\infty.$$
 Si $\lim_a f(x)=l$ et $\lim_a g(x)=l$ et $f(x)=l$ de $f(x)=l$ 6. (Théorème de comparaison)

$$Si \lim_{t \to \infty} f(x) = +\infty \text{ et } g \ge f \text{ alors } \lim_{t \to \infty} g(x) = +\infty.$$

$$Si \lim_{t \to \infty} f(x) = +\infty \text{ et } g \le f \text{ alors } \lim_{t \to \infty} g(x) = -\infty.$$

$$Si \lim_{t \to \infty} f(x) = \infty$$
 et $g \le f$ alors $\lim_{t \to \infty} g(x) = -\infty$.

Continuité $\mathbf{4}$

Définition 4.1 Soit f une fonction définie en un point x_0 .

- 1. On dit que f est continue à droite de x_0 si $\lim_{x \to x_0} f(x) = f(x_0)$.
- 2. On dit que f est continue à gauche de x_0 si $\lim_{x\to x_0} f(x) = f(x_0)$.
- 3. On dit que f est continue x_0 si

$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} f(x) = \lim_{x \to x_0} f(x) = f(x_0).$$

4. f est continue sur un intervalle $I \subset \mathbb{R}$ si elle est continue en tout point $de\ I$.

4.1 Opérations sur les fonctions continues

Soient f et q deux fonctions définies sur un intervalle I; soit un réel $a \in I$. Si les fonctions f et g sont continues en a, alors:

- 1. $\lambda.f$ est continue en $a\ (\lambda \in \mathbb{R})$.
- 2. f + g est continue en a (idem pour "-").
- 3. f.q est continue en a.
- 4. $\frac{f}{g}$ est continue en a si $g(a) \neq 0$ et non définie en a si g(a) = 0.
- 5. Si une fonction g est continue au point a et une fonction f est continue au point g(a), alors $f \circ g$ est continue en a.

4.2 Prolongement par continuité

Soit I un intervalle et $x_0 \in I$. Si f une fonction définie sur $I \setminus \{x_0\}$, et $\lim_{x \to x_0} f(x) = l$ existe, alors la fonction g définie par

$$g(x) = \begin{cases} f(x) & \text{si } x \neq x_0 \\ l & \text{si } = x_0 \end{cases}$$

 $g(x) = \begin{cases} f(x) & \text{si } x \neq x_0 \\ l & \text{si } x = x_0 \end{cases}$ s'appelle le prolongement par continuité de f en x_0 . La fonction g est alors continue en x_0 .

4.3 Théorème des valeurs intermédiaires

Theorem 4.2 Si f est une fonction continue sur un intervalle [a,b] avec f(a). f(b) < 0, alors il existe $\alpha \in]a,b[$ tel que $f(\alpha) = 0$. De plus, si f est strictement monotone sur [a,b], alors α est unique.

4.4 Fonction continue strictement monotone

Soit I un intervalle de \mathbb{R} , et soit f une fonction définie sut I, continue et strictement monotone alors on a les propriétés suivantes:

- 1. f est bijective de I vers f(I).
- 2. L'application réciproque $f^{-1}: f(I) \to I$, est continue strictement monotone de même nature que f (si f est strictement croissante alors f^{-1} l'est aussi, et si f est strictement décroissante alors f^{-1} l'est aussi).
- 3. Les graphes de f et de f^{-1} sont symétriques par rapport à la première bissectrice y = x.

Dérivation 5

Définitions 5.1

Soit $f: I \to \mathbb{R}$ une fonction définie sur un intervalle $I \subset \mathbb{R}$

1. On dit que f est dérivable en un point $x_0 \in I$ si et seulement si la limite suivante existe et est finie

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = l,\tag{1}$$

et on note dans ce cas $l = f'(x_0)$ appelé nombre dérivé de f au point x_0 .

2. Si dans la limite (1) on pose $x = x_0 + h$, alors si x tend vers x_0, h tend vers 0 et on obtient

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = f'(x_0).$$

- On dira que f est dérivable sur I si et seulement si f est dérivable en tout point de I.
 Si f est dérivable sur I, on peut alors définir une nouvelle fonction que l'on appellera fonction dérivée notée f' qui à chaque point x₀ de I, associe le nombre dérivé f'(x₀).
 Interprétation géométrique: La tangente de la courbe représentative de f en un point (x₀, f(x₀)) est de pente égale à f'(x₀) et a pour équation
- en un point $(x_0, f(x_0))$ est de pente égale à $f'(x_0)$ et a pour équation $f'(x_0)(x-x_0)+f(x_0).$

$$y = f'(x_0)(x - x_0) + f(x_0)$$

6.

$$f$$
 dérivable en $x_0 \Leftrightarrow \lim_{\substack{x \to x_0 \\ >}} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{\substack{x \to x_0 \\ <}} \frac{f(x) - f(x_0)}{x - x_0} = f'(x_0).$

7.

f dérivable en $x_0 \Rightarrow f$ continue en x_0 .

5.2Règles de dérivation

Si f et q sont deux fonctions dérivables alors on a les règles suivantes

- 1. (f+q)' = f'+q'.
- 2. (f.g)' = f'g + fg'.
- 3. $\left(\frac{f}{g}\right)' = \frac{f'g fg'}{g^2}$.

- 4. $(f^{\alpha})' = \alpha f' f^{\alpha-1}$.
- 5. On note, quand elles existent, $f=f^{(0)},\ f'=f^{(1)},f''=f^{(2)}$... $f^{(n)}=\left[f^{(n-1)}\right]'$ et $f^{(n)}$ est appelée dérivée $n^{i\grave{e}me}$ de f.
- 6. Si f est dérivable sur I et g est dérivable sur f(I) alors $(g \circ f)$ est dérivable sur I et on a la règle de dérivation

$$(g \circ f)' = f'. (g' \circ f).$$

7. Si f est continue strictement monotone et dérivable sur I alors sa fonction réciproque f^{-1} est dérivable sur f(I) et on a la règle de dérivation

$$(f^{-1})' = \frac{1}{f' \circ f^{-1}}.$$

5.3 Quelques théorèmes

Theorem 5.1 Théorème de Rolle

Soit f une fonction continue sur [a,b], dérivable sur [a,b] et telle que f(a) = f(b). f(b), $\exists c \in]a,b[; f'(c)] \downarrow 0.$ alors

Theorem 5.2 Théorème des accroissements finis Soit f une fonction continue sur [a, b] et dérivable sur]a, b[, alors

$$\exists c \in]a, b[; f(a) = f'(c)(b-a).$$

Proposition 5.3 Soit f une fonction continue sur [a,b], et dérivable sur]a,b[alors f est croissante (resp. décroissante) si et seulement si sa dérivée f' est positive (resp. négative).

Theorem 5.4 Règle de L'Hôpital

Soient f, g deux fonctions continues sur un intervalle $I \subset \mathbb{R}$, sauf peut être au point $x_0 \in I$, si $f(x_0) = g(x_0) = 0$ et $g'(x) \neq 0 \ \forall x \in I \setminus \{x_0\}$, et si $\lim_{x \to x_0} \frac{f'(x)}{g'(x)} = l, \ alors$

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = l.$$

Fonctions réciproques élémentaires

1. La fonction

$$f:$$

$$\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \longrightarrow [-1, 1]$$

$$x \mapsto f(x) = \sin(x)$$

est continue strictement croissante, elle est donc bijective et admet une application réciproque que l'on notera arcsin, ainsi

avec

$$\forall x \in [-1,1], \quad \left(y = \arcsin(x) \Longleftrightarrow x = \sin(y) \text{ et } y \in [-\frac{\pi}{2}, \frac{\pi}{2}]\right).$$

$$\arcsin\left(\sin(x)\right) = x; \quad \forall x \in [-\frac{\pi}{2}, \frac{\pi}{2}] \text{ et } \sin\left(\arcsin(x)\right) = x; \quad \forall x \in [-1,1].$$

2. La fonction

$$\begin{array}{ccc} f: & & [0,\pi] \longrightarrow [-1,1] \\ & x \mapsto f(x) = \cos(x) \end{array}$$

est continue strictement décroissante, elle est donc bijective et admet une application réciproque que l'on notera arccos, ainsi

arccos :
$$[-1,1] \longrightarrow [0,\pi] \\ x \mapsto f(x) = \arccos(x)$$

avec

3. La fonction

$$f:$$

$$\int_{-\frac{\pi}{2}, \frac{\pi}{2}} \left[\longrightarrow \mathbb{R} \atop x \mapsto f(x) = \tan(x) \right]$$

est continue strictement croissante, elle est donc bijective et admet une application réciproque que l'on notera $\arctan(x)$, ainsi

$$\arctan(x):$$
 $\mathbb{R} \longrightarrow \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$ $x \mapsto f(x) = \arctan(x)$

avec

$$\forall x \in \mathbb{R}, \quad \left(y = \arctan(x) \iff x = \tan(y) \text{ et } y \in]-\frac{\pi}{2}, \frac{\pi}{2}[\right).$$

$$\arctan\left(\tan(x)\right) = x; \quad \forall x \in]-\frac{\pi}{2}, \frac{\pi}{2}[\ \mathrm{et}\ \tan\left(\arctan(x)\right) = x; \quad \forall x \in \mathbb{R}.$$