Exercise 1 (04 pts).
I. Let a be a reel number. Give an example of a neighborhood of a.
II. Let $f: \mathbb{R} \rightarrow \mathbb{R}, x \mapsto f(x)=\frac{x}{x^{2}+1}$.
(a) Show that: $\forall x \in \mathbb{R}, \quad 0<\frac{1}{x^{2}+1} \leq 1$.
(b) Deduce that: $\forall x \in \mathbb{R}, \quad\left|\frac{x}{x^{2}+1}\right| \leq|x|$.
(c) Using Cauchy's Criteria, show that f is continuous at 0 .

Exercise 2 (05 pts).
I. Let P and Q be two statements. Using the truth table, verify the following equivalence: $\neg(P \wedge Q) \Longleftrightarrow \neg P \vee \neg Q$.
II. Let X the universal set and $A, B \subset X$. Show that: $(A \cup B)^{c}=A^{c} \cap B^{c}$.

Exercise 3 (05 pts). Let $f: \mathscr{D}_{f} \subseteq \mathbb{R} \rightarrow \mathbb{R}, x \mapsto f(x)=\frac{x}{(x-2)(x+2)}$.

1. Determine \mathscr{D}_{f} the domain of definition of the function f.
2. Find the parity of f.

Exercise $4(06 \mathrm{pts})$. Define $f: \mathbb{R} \rightarrow \mathbb{R}$ by $f(x)=\frac{x}{\sqrt{1+x^{2}}}$.

1. Show that f is injective on \mathbb{R}_{+}.
2. Show that f is surjective from \mathbb{R}_{+}to $[0 ; 1)$.
3. Determine the sets $\mathscr{D}_{1}, \mathscr{D}_{2} \subseteq \mathbb{R}$ such that, $f: \mathscr{D}_{1} \rightarrow \mathscr{D}_{2}$ is bijective. In this case, find the expression of f^{-1}.

Exercise 1 (04 pts).
I. (01.00 pt). Let a be a reel number. Give an example of a neighborhood of a.

A neighborhood \mathscr{N}_{a} of a point $a \in \mathbb{R}$ can be any open interval centered at a.
II. (03.00 pts). Let $f: \mathbb{R} \rightarrow \mathbb{R}, x \mapsto f(x)=\frac{x}{x^{2}+1}$.
(a) (01.00 pt). Show that: $\forall x \in \mathbb{R}, \quad 0<\frac{1}{x^{2}+1} \leq 1$.

Let $x \in \mathbb{R}$,

$$
\begin{aligned}
x^{2} \geq 0 & \Longrightarrow x^{2}+1 \geq 1 \\
& \Longrightarrow \frac{1}{x^{2}+1} \leq 1
\end{aligned}
$$

Furthermore,

$$
\begin{aligned}
x^{2} \geq 0 & \Longrightarrow x^{2}+1>0 \\
& \Longrightarrow \frac{1}{x^{2}+1}>0 .
\end{aligned}
$$

(b) (00.50 pts). Deduce that: $\forall x \in \mathbb{R}, \quad\left|\frac{x}{x^{2}+1}\right| \leq|x|$.
$\forall x \in \mathbb{R}$, we have,

$$
\begin{aligned}
\left|\frac{x}{x^{2}+1}\right| & =\left|\frac{1}{x^{2}+1}\right||x| & & \\
& =\frac{1}{x^{2}+1}|x| & & \because\left(\frac{1}{x^{2}+1}>0\right) \\
& \leq|x| . & & \because\left(\frac{1}{x^{2}+1} \leq 1\right)
\end{aligned}
$$

(c) (01.50 pts). Using Cauchy's Criteria, show that f is continuous at 0 .

Let $\varepsilon>0$.
If $|x|<\varepsilon$, then $|f(x)-f(0)|=\left|\frac{x}{x^{2}+1}\right| \leq|x-0|<\varepsilon$.
You just have to choose $\delta_{\varepsilon}=\varepsilon$ to obtain,
$\forall \varepsilon>0, \exists \delta_{\varepsilon}>0:\left(\forall x \in \mathscr{N}_{0}:|x-0|<\delta_{\varepsilon} \Longrightarrow|f(x)-f(0)|<\varepsilon\right)$, i.e.,
$\lim _{x \rightarrow 0} f(x)=0=f(0)$. Thus, f is continuous at 0 .
Exercise 2 (05 pts).
I. (02.00 pts). Let P and Q be two statements.

Using the truth table, verify the following equivalence: $\neg(P \wedge Q) \Longleftrightarrow \neg P \vee \neg Q$.

P	Q	$\neg P$	$\neg Q$	$P \wedge Q$	$\neg(P \wedge Q)$	$\begin{gathered} \neg P \vee \neg Q \\ 1 \end{gathered}$	$\neg(P \wedge Q) \Longleftrightarrow(\neg P \vee \neg Q)$	
0	0	1	1	0			1	00.50 pts
0	1	1	0	0	1	1	1	00.50 pts
1	0	0	1	0	1	1	1	00.50 pts
1	1	0	0	1	0	0	1	00.50 pts

II. (03.00 pts). Let X the universal set and $A, B \subset X$. Show that: $(A \cup B)^{c}=A^{c} \cap B^{c}$.

Let $x \in X$,

$$
\begin{aligned}
x \in(A \cup B)^{c} & \Longleftrightarrow x \notin A \cup B \\
& \Longleftrightarrow(x \notin A) \wedge(x \notin B) \\
& \Longleftrightarrow\left(x \in A^{c}\right) \wedge\left(x \in B^{c}\right) \\
& \Longleftrightarrow x \in A^{c} \cap B^{c} .
\end{aligned}
$$

Exercise $3(05 \mathrm{pts})$. Let $f: \mathscr{D}_{f} \subseteq \mathbb{R} \rightarrow \mathbb{R}, x \mapsto f(x)=\frac{x}{(x-2)(x+2)}$.

1. (01.50 pts). Determine \mathscr{D}_{f} the domain of definition of the function f.

$$
\begin{aligned}
\mathscr{D}_{f} & \triangleq\{x \in \mathbb{R}:(x-2)(x+2) \neq 0\} \\
& =\mathbb{R} \backslash\{x \in \mathbb{R}:(x-2)(x+2)=0\} \\
& =\mathbb{R} \backslash\{-2 ; 2\} .
\end{aligned}
$$

2. (03.50 pts). Find the parity of f.

- $\mathbb{R} \backslash\{-2 ; 2\}$ is symmetric with respect to the origin, which implies that if $x \in \mathbb{R} \backslash\{-2 ; 2\}$, then $-x \in \mathbb{R} \backslash\{-2 ; 2\}$.
- Let $x \in \mathbb{R} \backslash\{-2 ; 2\}$;

$$
\begin{aligned}
f(-x) & =\frac{(-x)}{((-x)+2)((-x)-2)} \\
& =\frac{-x}{(-x+2)(-x-2)} \\
& =\frac{-x}{-(x+2)(-(x-2))} \\
& \triangleq-f(x),
\end{aligned}
$$

then f is an odd function.
Exercise 4 (06 pts). Define $f: \mathbb{R} \rightarrow \mathbb{R}$ by $f(x)=\frac{x}{\sqrt{1+x^{2}}}$.

1. (02.50 pts). Show that f is injective on \mathbb{R}_{+}.

Let $x_{1}, x_{2} \in \mathbb{R}_{+}$:

$$
\begin{aligned}
f\left(x_{1}\right)=f\left(x_{2}\right) & \Longleftrightarrow \frac{x_{1}}{\sqrt{1+x_{1}^{2}}}=\frac{x_{2}}{\sqrt{1+x_{2}^{2}}} \\
& \Longleftrightarrow x_{1} \sqrt{1+x_{2}^{2}}=x_{2} \sqrt{1+x_{1}^{2}} \\
& \Longleftrightarrow x_{1}^{2}\left(1+x_{2}^{2}\right)=x_{2}^{2}\left(1+x_{1}^{2}\right) \\
& \Longleftrightarrow x_{1}^{2}+x_{1}^{2} x_{2}^{2}=x_{2}^{2}+x_{2}^{2} x_{1}^{2} \\
& \Longleftrightarrow x_{1}^{2}-x_{2}^{2}=0 \\
& \Longleftrightarrow\left(x_{1}, x_{2} \in \mathbb{R}_{+}\right) \\
& \Longleftrightarrow\left(x_{1}=x_{2}\right) \vee\left(x_{1}+x_{2}\right)=0 \\
& \Longleftrightarrow x_{1}=x_{2} .
\end{aligned}
$$

2. (02.00 pts). Show that f is surjective from \mathbb{R}_{+}to $[0 ; 1)$.

Let $y \in[0 ; 1)$. Let find $x \in \mathbb{R}_{+}$such that

$$
\begin{array}{rlr}
y=f(x) & \Longleftrightarrow y=\frac{x}{\sqrt{1+x^{2}}} & \\
& \Longleftrightarrow y \sqrt{1+x^{2}}=x & \\
& \Longleftrightarrow y^{2}\left(1+x^{2}\right)=x^{2} & \\
& \Longleftrightarrow y^{2}+y^{2} x^{2}-x^{2}=0 & \\
& \Longleftrightarrow y^{2}+x^{2}\left(y^{2}-1\right)=0 & \\
& \left.\Longleftrightarrow x^{2}=\frac{-y^{2}}{y^{2}-1} \text { and } y \in[0 ; 1)\right) & 00.50 \mathrm{pts} \\
& \Longleftrightarrow x^{2}=\frac{y^{2}}{1-y^{2}} \\
& \Longleftrightarrow x=\frac{y}{\sqrt{1-y^{2}}} . & \\
& & \\
& & \\
\text { Q.E.D }
\end{array}
$$

3. (01.50 pts). Determine the sets $\mathscr{D}_{1}, \mathscr{D}_{2} \subseteq \mathbb{R}$ such that, $f: \mathscr{D}_{1} \rightarrow \mathscr{D}_{2}$ is bijective. In this case, find the expression of f^{-1}.

- Determine the sets $\mathscr{D}_{1}, \mathscr{D}_{2} \subseteq \mathbb{R}$ such that, $f: \mathscr{D}_{1} \rightarrow \mathscr{D}_{2}$ is bijective.
f is bijective if and only if f is injective and f is surjective, which leads us to take $\mathscr{D}_{1}=\mathbb{R}_{+}$ and $\mathscr{D}_{2}=(0 ; 1]$.
- The expression of f^{-1}.

$$
\begin{aligned}
f^{-1}:[0 ; 1) & \longrightarrow \mathbb{R}_{+} \\
x & \mapsto
\end{aligned} f^{-1}(x)=\frac{x}{\sqrt{1-x^{2}}}
$$

