Tutorial Sheet number 01

Exercise 1. Let P, Q and R be three statements. Using the truth table, verify the following equivalences
(i) $\neg(P \Longrightarrow Q) \Longleftrightarrow P \wedge \neg Q$; (contradiction principle) (ii) $P \wedge(Q \vee R) \Longleftrightarrow(P \wedge Q) \vee(P \wedge R)$;
(iii) $(P \Longrightarrow Q) \Longleftrightarrow(\neg Q \Longrightarrow \neg P)$; (contraposition principle)
(iv) Optional. $\neg(P \wedge Q) \Longleftrightarrow \neg P \vee \neg Q$; (v) Optional. $\neg(P \vee Q) \Longleftrightarrow \neg P \wedge \neg Q$.
(vi) Optional. $[(P \vee Q) \Longrightarrow R] \Longleftrightarrow[(P \Longrightarrow R) \wedge(Q \Longrightarrow R)]$ (vii) Optional. $P \vee(Q \wedge R) \Longleftrightarrow(P \vee Q) \wedge(P \vee R) ;$

Exercise 2. Suppose P is true, Q is true, R is false and S is true. Find the truth value of
(i) $(S \vee P) \wedge(Q \wedge \neg S)$;
(iii) Optional. $\neg[(S \wedge P) \vee \neg R]$;
(ii) $(S \vee P) \wedge(\neg R \vee \neg S)$;
(iv) Optional. $(\neg P \vee Q) \vee(S \wedge R)$.

Exercise 3.

1. Are the following statements true or false
(a) $\exists x \in \mathbb{N}: \forall y \in \mathbb{R}, \quad x+y>0$;
(c) $\exists x \in \mathbb{D}: \exists y \in \mathbb{Q}, \quad x y=0$;
(b) $\forall x \in \mathbb{R}, \exists y \in \mathbb{Z}: \quad x+y=1$;
(d) $\forall x \in \mathbb{R}, \forall y \in \mathbb{R}, \quad x-y=y-x$.
2. Give their negation.

Exercise 4. Given that $U=\{-2,-1,0,1,2,3,4,5,6,7\}, X=\{$ Even numbers in $U\}, Y=$ $\{$ Prime numbers in $U\}$ and $Z=\{-2,3,5,6\}$,

1. Which ones are correct i) $2 \in U$; ii) $-2 \subset Z$; iii) $\{3\} \subset Y$; iv) $\emptyset \in U$; v) $\emptyset \subset U$; vi) $\{\emptyset\} \subset U$
2. Perform the following operations i) $X \cup Y$; ii) $(X \cap Y)^{c}$; iii) $X \cap(Y \backslash Z)$; iv) The cardinality of $X \cup Y$.

Exercise 5. Optional. Let $A=\{x \in \mathbb{Z}: x>5\}, B=\{x \in \mathbb{Z}: x<9\}$ and $C=\{x \in \mathbb{Z}: 5 \leq$ $x \leq 7\}$. Find i) $A \cap B$; ii) $B \cup C$; iii) $(A \cup C)^{c}$; iv) $\left(A^{c} \cup B\right)^{c}$.

Exercise 6. Let X a set and $A, B \subset X$. Show that (a) $(A \cap B)^{c}=A^{c} \cup B^{c} ;$ (b) $A \backslash B=A \cap B^{c}$;
(c) Optional. $(A \cup B)^{c}=A^{c} \cap B^{c}$.

Exercise 7. Optional. Let $A ; B ; C$ be three subsets of a set X. Show each of the following set equalities

1) $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$
2) $A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$
3) $A \backslash(B \cup C)=(A \backslash B) \cap(A \backslash C)$
4) $A \backslash(B \cap C)=(A \backslash B) \cup(A \backslash C)$

Exercise 8. Let X a set and $A, B \subset X$. Prove by contradiction that, if $A \subset B$, then $A \backslash B=\emptyset$
Exercise 9. Prove by contraposition that
(i) $\forall n \in \mathbb{Z}, \quad n^{3}+5$ is odd $\Longrightarrow n$ is even.
(ii) Optional. for all real numbers a and b, if $a b$ is irrational, then a is irrational or b is irrational.

Exercise 10. Prove by mathematical induction
a) $\forall n \in \mathbb{N}, \sum_{k=0}^{n} k^{2}=\frac{n(n+1)(2 n+1)}{6}$;
b) Optional. $\forall x \in \mathbb{R}_{+}, \forall n \in \mathbb{N},(1+x)^{n} \geq 1+n x$.

Exercise 11. Define $f: \mathbb{R} \rightarrow \mathbb{R}$ by $f(x)=\frac{x}{x^{2}+1}$. Is f injective? surjective? bijective ?
Exercise 12. Let $f: \mathbb{R} \backslash\{-1 ; 1\} \rightarrow \mathbb{R} \backslash\{0\}$ defined by $f(x)=\frac{x+1}{x-1}, g: \mathbb{R} \backslash\{0\} \rightarrow \mathbb{R}$ defined by $g(x)=1 / x$. Determine $g \circ f$.

Exercise 13. Define $f: \mathbb{R} \rightarrow \mathbb{R}$ by $f(x)=x^{2}+1$.

1. Find 2. If $g: \mathbb{R} \rightarrow \mathbb{R}$ is the map $g(x)=x^{3}$. Find
(a) $f([0 ; 2])$;
(b) $f^{-1}((-1 ; 1))$;
(a) $(g \circ f)^{-1}([0 ; 2]) ;(\mathrm{c})(f \circ g)^{-1}([0 ; 2])$;
(c) $f^{-1}([2 ; 3])$.
(b) $(g \circ f)([0 ; 2]) ;(\mathrm{d})(f \circ g)([0 ; 2])$;

Exercise 14. Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be functions. Prove that

1. if f and g are both injective, then $g \circ f$ is injective;
2. if f and g are both surjective, then $g \circ f$ is surjective.
3. if $g \circ f$ is surjective, then g is surjective.
4. if $g \circ f$ is surjective and g is injective, then f is surjective.

Exercise 15. Optional. Let $f: A \rightarrow B$ be a map. For subsets $K, L \subset A$ and $M, N \subset B$, the following hold
(a) $f(K \cup L)=f(K) \cup f(L)$.
(c) $f^{-1}(M \cap N)=f^{-1}(M) \cap f^{-1}(N)$.
(b) $f^{-1}(M \cup N)=f^{-1}(M) \cup f^{-1}(N)$.
(d) $f^{-1}(M \backslash N)=f^{-1}(M) \backslash f^{-1}(N)$.
(e) Show, by finding an explicit example, that in general, $f(K \backslash L) \neq f(K) \backslash f(L)$.

Exercise 16. Optional. Show that the function $f: A \rightarrow B$ is injective iff $f(K \cap L)=$ $f(K) \cap f(L)$ for all subsets K, L of A.

