

TUTORIAL SHEET NUMBER 01

Exercise 1. Let P, Q and R be three statements. Using the truth table, verify the following equivalences

(i) $\neg (P \implies Q) \iff P \land \neg Q$; (contradiction principle) (ii) $P \land (Q \lor R) \iff (P \land Q) \lor (P \land R)$; (iii) $(P \implies Q) \iff (\neg Q \implies \neg P)$; (contraposition principle) (iv) **Optional.** $\neg (P \land Q) \iff \neg P \lor \neg Q$; (v) **Optional.** $\neg (P \lor Q) \iff \neg P \land \neg Q$. (vi) **Optional.** $[(P \lor Q) \implies R] \iff [(P \implies R) \land (Q \implies R)]$ (vii) **Optional.** $P \lor (Q \land R) \iff (P \lor Q) \land (P \lor R)$;

Exercise 2. Suppose P is true, Q is true, R is false and S is true. Find the truth value of

- (i) $(S \lor P) \land (Q \land \neg S)$; (iii) **Optional.** $\neg [(S \land P) \lor \neg R]$;
- (ii) $(S \lor P) \land (\neg R \lor \neg S)$; (iv) **Optional.** $(\neg P \lor Q) \lor (S \land R)$.

Exercise 3.

- 1. Are the following statements *true* or *false*
 - (a) $\exists x \in \mathbb{N} : \forall y \in \mathbb{R}, \quad x + y > 0;$ (c) $\exists x \in \mathbb{D} : \exists y \in \mathbb{Q}, \quad xy = 0;$
 - (b) $\forall x \in \mathbb{R}, \exists y \in \mathbb{Z} : x + y = 1;$ (d) $\forall x \in \mathbb{R}, \forall y \in \mathbb{R}, x y = y x.$
- 2. Give their negation.

Exercise 4. Given that $U = \{-2, -1, 0, 1, 2, 3, 4, 5, 6, 7\}$, $X = \{$ Even numbers in $U\}$, $Y = \{$ Prime numbers in $U\}$ and $Z = \{-2, 3, 5, 6\}$,

- 1. Which ones are correct i) $2 \in U$; ii) $-2 \subset Z$; iii) $\{3\} \subset Y$; iv) $\emptyset \in U$; v) $\emptyset \subset U$; vi) $\{\emptyset\} \subset U$
- 2. Perform the following operations i) $X \cup Y$; ii) $(X \cap Y)^c$; iii) $X \cap (Y \setminus Z)$; iv) The cardinality of $X \cup Y$.

Exercise 5. Optional. Let $A = \{x \in \mathbb{Z} : x > 5\}$, $B = \{x \in \mathbb{Z} : x < 9\}$ and $C = \{x \in \mathbb{Z} : 5 \le x \le 7\}$. Find *i*) $A \cap B$; *ii*) $B \cup C$; *iii*) $(A \cup C)^c$; *iv*) $(A^c \cup B)^c$.

Exercise 6. Let X a set and $A, B \subset X$. Show that (a) $(A \cap B)^c = A^c \cup B^c$; (b) $A \setminus B = A \cap B^c$; (c) **Optional.** $(A \cup B)^c = A^c \cap B^c$.

Exercise 7. Optional. Let A; B; C be three subsets of a set X. Show each of the following set equalities

1) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ 3) $A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$

2)
$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

4) $A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$

Exercise 8. Let X a set and $A, B \subset X$. Prove by contradiction that, if $A \subset B$, then $A \setminus B = \emptyset$ **Exercise 9.** Prove by contraposition that

- (i) $\forall n \in \mathbb{Z}$, $n^3 + 5$ is odd $\implies n$ is even.
- (ii) **Optional.** for all real numbers a and b, if ab is irrational, then a is irrational or b is irrational.

Exercise 10. Prove by mathematical induction

- a) $\forall n \in \mathbb{N}, \sum_{k=0}^{n} k^2 = \frac{n(n+1)(2n+1)}{6};$
- b) **Optional.** $\forall x \in \mathbb{R}_+, \forall n \in \mathbb{N}, (1+x)^n \ge 1 + nx.$

Exercise 11. Define $f : \mathbb{R} \to \mathbb{R}$ by $f(x) = \frac{x}{x^2+1}$. Is f injective ? surjective ? bijective ?

Exercise 12. Let $f : \mathbb{R} \setminus \{-1; 1\} \to \mathbb{R} \setminus \{0\}$ defined by $f(x) = \frac{x+1}{x-1}$, $g : \mathbb{R} \setminus \{0\} \to \mathbb{R}$ defined by g(x) = 1/x. Determine $g \circ f$.

Exercise 13. Define $f : \mathbb{R} \to \mathbb{R}$ by $f(x) = x^2 + 1$.

1. Find

2. If $g : \mathbb{R} \to \mathbb{R}$ is the map $g(x) = x^3$. Find

(a) f([0;2]);(b) $f^{-1}((-1;1));$ (c) $f^{-1}([2;3]).$ (d) $(g \circ f)^{-1}([0;2]);$ (d) $(f \circ g)^{-1}([0;2]);$ (e) $(g \circ f)([0;2]);$ (f) $(f \circ g)([0;2]);$

Exercise 14. Let $f: X \to Y$ and $g: Y \to Z$ be functions. Prove that

- 1. if f and g are both injective, then $g \circ f$ is injective;
- 2. if f and g are both surjective, then $g \circ f$ is surjective.
- 3. if $g \circ f$ is surjective, then g is surjective.
- 4. if $g \circ f$ is surjective and g is injective, then f is surjective.

Exercise 15. Optional. Let $f : A \to B$ be a map. For subsets $K, L \subset A$ and $M, N \subset B$, the following hold

(a) $f(K \cup L) = f(K) \cup f(L)$. (c) $f^{-1}(M \cap N) = f^{-1}(M) \cap f^{-1}(N)$.

(b)
$$f^{-1}(M \cup N) = f^{-1}(M) \cup f^{-1}(N)$$
. (d) $f^{-1}(M \setminus N) = f^{-1}(M) \setminus f^{-1}(N)$.

(e) Show, by finding an explicit example, that in general, $f(K \setminus L) \neq f(K) \setminus f(L)$.

Exercise 16. Optional. Show that the function $f : A \to B$ is injective iff $f(K \cap L) = f(K) \cap f(L)$ for all subsets K, L of A.