RÉPUBLIQUE ALGÉRIENNE DÉMOCRATIQUE ET POPULAIRE
MINISTÈRE DE L'ENSEIGNEMENT SUPÉRIEUR ET DE LA RECHERCHE SCIENTIFIQUE

Tlemcen University

1. Sets and mappings

1.1 Sets

Definition 1.1.1 Intuitively, a set A is a collection of objects. An object x containing in A is called element or member. We write

$$
x \in A
$$

to say x is an element (member) of A, x belongs to A or A contains x.
The number of elements of a set A is denoted by $\operatorname{card}(A)$ (the cardinality of A).
A set is represented by

1. listing its members between a pair of braces. For example: $\{$ book, copybook, pen, pencil, paper, gum $\}$ or $\left\{0,1.2, \sqrt{2}, \pi, \frac{2}{3}, \ln 3, e^{2}\right\}$;
2. means of some defining property. For example: the set of all letters of the English alphabet or $\{x \mid x$ is an integer $\}$ also written by $\{x: x$ is an integer $\}$. In general, if P is a property, thus the set is often defined by $\{x: x$ has property $P\}$.

- x is not an element of the set X is symbolised by $x \notin A$ (x doesn't belong to A).
- The empty set is denoted by \emptyset and is defined by for all x, x doesn't belong to \emptyset, i.e.,

$$
\forall x, \quad x \notin \emptyset .
$$

Its cardinality $\operatorname{card}(\emptyset)=0$.

- We call $0,1,2,3,4,5,6,7,8,9$ a digit.
$\mathbb{N}=$ the set of natural numbers,

$$
\begin{aligned}
& \triangleq\{1 ; 2 ; 3 ; \ldots\} \\
& \triangleq \llbracket 1 ; \infty \llbracket
\end{aligned}
$$

$\mathbb{Z}=$ the set of integers,

$$
\triangleq\{\ldots ;-3 ;-2 ;-1 ; 0 ; 1 ; 2 ; 3 ; \ldots\}
$$

$$
\triangleq \rrbracket-\infty ; \infty \llbracket
$$

$\mathbb{D}=$ the set of decimal numbers,

$$
\begin{aligned}
& \triangleq\left\{\frac{p}{2^{n} 5^{m}}:(p \in \mathbb{Z}) \wedge(n, m \in \mathbb{N})\right\} \\
\mathbb{Q} & =\text { the set of rational numbers }, \\
& \triangleq\{p / q:(p \in \mathbb{Z}) \wedge(q \in \mathbb{N})\} \\
\mathbb{R} & =\text { the set of real numbers, } \\
& \triangleq\left\{x: x=n+\sum_{k \in \mathbb{N}} \frac{a_{k}}{10^{k}} \text { with }\left(\forall k \in \mathbb{N}, a_{k} \text { is a digit }\right) \wedge(n \in \mathbb{Z})\right\} \\
& \triangleq(-\infty ; \infty) \text { or }]-\infty ; \infty[\\
\mathbb{C} & =\text { the set of complex numbers, } \\
& \triangleq\left\{a+\mathrm{i} b:(a, b \in \mathbb{R}) \wedge\left(\mathrm{i}^{2}=-1\right)\right\} .
\end{aligned}
$$

- An interval is a subset of \mathbb{R} defined by $\forall a, b \in \mathbb{R}(a<b)$,

$$
\begin{array}{rll}
(a ; b) & \triangleq\{x \in \mathbb{R}: a<x<b\}, & \\
\text { Open interval; } \\
{[a ; b) \triangleq\{x \in \mathbb{R}: a \leq x<b\},} & \text { Right-open interval; } \\
(a ; b] \triangleq\{x \in \mathbb{R}: a<x \leq b\}, & \text { Left-open interval; } \\
{[a ; b] \triangleq\{x \in \mathbb{R}: a \leq x \leq b\},} & & \text { Closed interval; } \\
(-\infty ; b] \triangleq\{x \in \mathbb{R}: x \leq b\} ; & \\
(-\infty ; b) \triangleq\{x \in \mathbb{R}: x<b\} ; & \\
{[a ; \infty) \triangleq\{x \in \mathbb{R}: x \geq a\} ;} & \\
(a ; \infty) \triangleq\{x \in \mathbb{R}: x>a\} ; &
\end{array}
$$

we can replace '(' by '[' in the right-open interval and '(' by ']' in the left-open interval, thus, the open interval $(a ; b)$ can be denoted by $] a ; b[$

- A singleton is a set consisting of exactly one member as in $A=\{b\}$. We have

$$
x \in\{b\} \text { if and only if (iff) } x=b .
$$

Definition 1.1.2 Let A and B be two sets, we say that A is a subset of B or A is contained in $B(A \subseteq B)$, iff, every member of A is a member of B (for all x, if $x \in A$, then $x \in B$), i.e.,

$$
A \subseteq B \Longleftrightarrow(\forall x, \quad x \in A \Rightarrow x \in B)
$$

Definition 1.1.3 Let A and B be two sets, we say that A equal to B iff A is a subset of B and B is a subset of A. We symbolise

$$
A=B \Longleftrightarrow(A \subseteq B) \wedge(B \subseteq A)
$$

- If $B \subseteq A$ and $B \neq A$ then we say that B is a proper subset of A and we write $B \subset A$.
- A is not subset of B iff there exists an element x such that $x \in A$ and $x \notin B$, we symbolise

$$
A \nsubseteq B \Longleftrightarrow \exists x: \quad(x \in A) \wedge(x \notin B) .
$$

Theorem 1.1.1 For all sets A, B and C, we have

1. $A=A$;
2. If $A=B$, then $B=A$;
3. If $A=B$ and $B=C$, then $A=C$;

Theorem 1.1.2 For all sets A, B and C, we have

1. $A \subseteq A$ (reflexivity);
2. $A \subseteq B$ and $B \subseteq A$ imply $A=B$ (antisymmetry);
3. $A \subseteq B$ and $B \subseteq C$ imply $A \subseteq C$ (transitivity);

Definition 1.1.4 Let A and B be two non-empty sets

- The complement of A denoted by A^{c} is the set of all elements which do not belong to A, i.e.,

$$
A^{c} \triangleq\{x: x \notin A\} .
$$

- The intersection of A and B denoted by $A \cap B$ (A intersect B) is the set of all elements that belong to both A and B, i.e.,

$$
A \cap B \triangleq\{x:(x \in A) \wedge(x \in B)\} .
$$

- The union of A and B denoted by $A \cup B(A$ union $B)$ is the set of all elements that
belong either to A or to B or to both A and B, i.e.,

$$
A \cup B \triangleq\{x:(x \in A) \vee(x \in B)\} .
$$

- The set difference of A and B denoted by $A \backslash B(A$ minus $B)$ is the set of all elements that belong to A and don't belong to B, i.e.,

$$
A \backslash B \triangleq\{x:(x \in A) \wedge(x \notin B)\}
$$

- The Cartesian product of A and B denoted by $A \times B$ (A times (cross) B) is the set of all ordered pairs (x, y) with $x \in A$ and $y \in B$, i.e.,

$$
A \times B \triangleq\{(x, y):(x \in A) \wedge(y \in B)\} .
$$

If $A=B$, then we denote the Cartesian product by $A \times A$ by A^{2}.

1.2 Mappings

Definition 1.2.1 Let X and Y be non-empty sets. A mapping (map or function) f from X to Y is an assignment (rule) that relates each element $x \in X$ with a unique point $y \in Y$ denoted $f(x)\left(x f, f_{x}\right.$ or $\left.f x\right)$ (the value of f at the argument x or the image of x under f). We denote symbolically this assignment by $f: X \rightarrow Y$ or $X \xrightarrow{f} Y(f$ maps X to $Y)$ where X is called the domain of $f\left(X \triangleq \operatorname{dom} f(\operatorname{dom}(f)) \triangleq \mathfrak{D}_{f}\right)$ and Y is called the codomain of f. On occasion we use the symbol $x \mapsto f(x)$ which means that x maps to $f(x)$. And sometimes also

$$
\begin{aligned}
f: X & \rightarrow Y \\
x & \mapsto f(x) .
\end{aligned}
$$

The range (image) of f is the subset $f(X)(\operatorname{Im}(f)$ or $\operatorname{Im} f)$ of Y defined by

$$
\operatorname{Im} f \triangleq\{f(x): x \in X\}
$$

The graph of f denoted \mathscr{G}_{f} is the set of ordered pairs $(x, y) \in X \times Y$ such that $y=f(x)$, i.e.,

$$
\begin{aligned}
\mathscr{G}_{f} & \triangleq\{(x, y) \in X \times Y: y=f(x)\}, \\
& =\{(x, f(x)): x \in X\} .
\end{aligned}
$$

The set of all maps from X to Y is denoted by $\mathscr{F}(X, Y)$.
Definition 1.2.2 The image by a function $f: X \rightarrow Y$ of $A \subset X$, is the subset $f(A)$ of Y defined by

$$
f(A) \triangleq\{f(x): x \in A\}
$$

The inverse image (preimage) by f of a subset B of Y is the subset $f^{-1}(B)$ of X
defined by

$$
f^{-1}(B) \triangleq\{x \in X: f(x) \in B\} .
$$

Definition 1.2.3 A map $f: X \rightarrow Y$ is said

- a surjection (surjective) iff $f(X)=Y$;
- an injection (injective) iff $\forall x_{1}, x_{2} \in X, \quad x_{1} \neq x_{2} \Longrightarrow f\left(x_{1}\right) \neq f\left(x_{2}\right)$, in an equivalent manner, $\forall x_{1}, x_{2} \in X, \quad f\left(x_{1}\right)=f\left(x_{2}\right) \Longrightarrow x_{1}=x_{2}$;
- a bijection (bijective) iff $\forall y \in Y, \exists!x \in X: \quad y=f(x)$, i.e., f is a surjection and an injection.

Definition 1.2.4 Let $f: X \rightarrow Y$ and $g: Y^{\prime} \rightarrow Z\left(Y \subseteq Y^{\prime}\right)$ be two functions. The composition of g and f is the function denoted by $g \circ f$ (g round f) and defined by

Thus,

$$
\left.\begin{array}{rl}
g \circ f: & X
\end{array}\right) Z=\left\{\left.\begin{array}{l}
\\
x
\end{array} \right\rvert\, g \circ f(x)=g[f(x)] .\right.
$$

$g \circ f$ is the composite of g and f.
(R) In general, $f \circ g \neq g \circ f$

Theorem 1.2.1 Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$. Then

- $g \circ f$ is injective $\Longrightarrow f$ is injective;
- $g \circ f$ is surjective $\Longrightarrow g$ is surjective.

Theorem 1.2.2 Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$. Then,

1. if f and g are both injections, then $g \circ f$ is an injection.
2. if f and g are both surjections, then $g \circ f$ is a surjection.
3. if f and g are both bijections, then $g \circ f$ is a bijection.

Definition 1.2.5 Let $f: X \rightarrow Y$ be a bijection. Then there exists a unique function called the inverse function of f and is defined by $f^{-1}: Y \rightarrow X$ such that

$$
\begin{cases}\forall x \in X, & f^{-1}[f(x)]=x \\ \forall y \in Y, & f\left[f^{-1}(y)\right]=y .\end{cases}
$$

In other words, if we define the identity function of a set A as

$$
\begin{aligned}
\mathrm{id}_{A}: & \rightarrow \\
x & \mapsto \operatorname{id}_{A}(x)=x .
\end{aligned}
$$

Then, the inverse function verifies $f^{-1} \circ f=\operatorname{id}_{X}$ and $f \circ f^{-1}=\operatorname{id}_{Y}$.

Theorem 1.2.3 If $f: X \rightarrow Y$ and $g: Y \rightarrow X$ are functions such that

$$
f \circ g=\operatorname{id}_{Y} \text { and } g \circ f=\operatorname{id}_{X} .
$$

Then, f is a bijection and $f^{-1}=g$ (note that g is also a bijection and $g^{-1}=f$. Thus, f and g are each other's inverses.)

Theorem 1.2.4 If $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ are bijections. Then,

$$
(g \circ f)^{-1}=f^{-1} \circ g^{-1}
$$

