RÉPUBLIQUE ALGÉRIENNE DÉMOCRATIQUE ET POPULAIRE MINISTÈRE DE L'ENSEIGNEMENT SUPÉRIEUR ET DE LA RECHERCHE SCIENTIFIQUE

TLEMCEN UNIVERSITY

Contents

I R	eal functions of one real variable 4
1	Generalities
1.1	Some properties of \mathbb{R} 6
1.2 1.2.1 1.2.2 1.2.3 1.2.4 1.2.5 1.2.6	Real functions on R8Basic properties of real functions8Parity and periodicity8Sens of variation9Bounded functions9The floor function10Elementary functions10

Part I

Real functions of one real variable

ali.rimouche@univ-tlemcen.dz

1. Generalities

Contents

1.1	Some properties of \mathbb{R}	6
1.2	Real functions on \mathbb{R}	8
1.2.1	Basic properties of real functions	8
1.2.2	Parity and periodicity	8
1.2.3	Sens of variation	9
1.2.4	Bounded functions	9
1.2.5	The floor function	10
1.2.6	Elementary functions	10

Some properties of \mathbb{R} 1.1

Definition 1.1.1 Let *A* be a non-empty subset of \mathbb{R} .

- We say that A is bounded above if $\exists M \in \mathbb{R} : \forall a \in A, a \leq M.$ M is called an upper bound (majorant) for A and it is not unique. We call the smallest upper bound supremum (least upper bound (lub)) of the set A and it is denoted by supA $(\sup_{x \in A} x \triangleq \sup\{x : x \in A\}).$ • We say that *A* is *bounded below* if $\exists m \in \mathbb{R} : \forall a \in A, m \le a. m$ is called a *lower*

1.1 Some properties of \mathbb{R}

bound (minorant) for *A*. We call the biggest lower bound *infemum* (greatest lower bound (glb)) of the set *A* and it is denoted by $\inf A$ ($\inf_{x \in A} x \triangleq \inf \{x : x \in A\}$).

• We say that *A* is *bounded* if *a* is bounded above and bounded below. If *A* is not a bounded set, then we say that *A* is *unbounded*.

- R
- (i) If $\sup A \in A$, then the $\sup A$ is called *maximum* of A and denoted by $\max A$ $(\max_{x \in A} x \triangleq \max\{x : x \in A\})$.
- (ii) If $\inf A \in A$, then the $\inf A$ is called *minimum* of A and denoted by $\min A$ $(\min_{x \in A} x \triangleq \min\{x : x \in A\})$.

(iii)
$$\sup \emptyset \triangleq -\infty$$
 and $\inf \emptyset \triangleq \infty$

Theorem 1.1.1 Let *A* be an non-empty subset of \mathbb{R} .

- *i*) If A is bounded above, then supA exists and it is unique. If A contains a biggest element maxA, then sup $A = \max A$.
- *ii)* If A is bounded below, then $\inf A$ exists and it is unique. If A contains a smallest element $\min A$, then $\inf A = \min A$.

Theorem 1.1.2 Let *A* be an non-empty subset of \mathbb{R} .

i) If A is bounded above, then a real number M is called sup A iff

$$\begin{cases} M \text{ is an upper bound,} \\ \forall \varepsilon > 0, \exists x \in A : \quad x > M - \varepsilon. \end{cases}$$

ii) If A is bounded below, then a real number m is called infA iff

 $\begin{cases} m \text{ is a lower bound,} \\ \forall \varepsilon > 0, \exists x \in A : \quad x < m + \varepsilon. \end{cases}$

Definition 1.1.2 Let $x \in \mathbb{R}$. The *absolute value* of x is the nonnegative number |x| defined by

$$|x| \triangleq \max\{x; -x\} \triangleq \begin{cases} x & \text{if } x \ge 0, \\ -x & \text{if } x < 0. \end{cases}$$

Properties 1.1.1

 $\begin{array}{ll} (a) \ \forall a,b \in \mathbb{R}, & |a+b| \leq |a|+|b|; \\ (b) \ \forall a,b \in \mathbb{R}, & ||a|-|b|| \leq |a-b|; \\ (c) \ \forall a,b \in \mathbb{R}, & |ab| = |a||b|; \end{array}$

(triangle inequality)

Definition 1.1.3 Let $x \in \mathbb{R}$. The *floor* of *x*, denoted by $\lfloor x \rfloor$ ([*x*], floor(*x*)), is the greatest

integer less than or equal to x, i.e.,

$$[x] \triangleq \max\{n \in \mathbb{Z} : n \le x\}$$

Theorem 1.1.3 For all real number x, the floor of x is the unique integer that verifies

x - 1 < |x| < x.

Properties 1.1.2 For all real number x, we have

- $|x| \le x < |x| + 1;$
- $\forall n \in \mathbb{Z}, \quad \lfloor x + n \rfloor = \lfloor x \rfloor + n;$
- $\forall y \in \mathbb{R}, \quad |x+y| = |x| + |y| + \varepsilon(x,y), \quad \text{with } \varepsilon(x,y) \in \{0,1\}$

1.2 Real functions on \mathbb{R}

1.2.1 Basic properties of real functions

- **Definition 1.2.1** A function $f: X \to Y$ is said
 - *real function* if $Y \subseteq \mathbb{R}$;
 - *function of one real variable* if $X \triangleq \mathscr{D}_f \subseteq \mathbb{R}$

Let f and g be real functions.

- $\forall \lambda \in \mathbb{R}$, λf is the real function defined by $\forall x \in \mathscr{D}_f$, $(\lambda f)(x) \triangleq \lambda f(x)$.
- f + g is the real function defined by $\forall x \in \mathscr{D}_f \cap \mathscr{D}_g$, $(f + g)(x) \triangleq f(x) + g(x)$.
- fg is the real function defined by $\forall x \in \mathscr{D}_f \cap \mathscr{D}_g$, $(fg)(x) \triangleq f(x)g(x)$.
- f/g is the real function defined by $\forall x \in (\mathscr{D}_f \cap \mathscr{D}_g) \setminus \{x \in \mathbb{R} : g(x) = 0\}, (f/g)(x) \triangleq$ $\frac{\overline{g(x)}}{\overline{g(x)}}$
- $g \circ f$ is the real function defined by $\forall x \in \mathscr{D}_f \cap \{x \in \mathbb{R} : f(x) \in \mathscr{D}_g\}, (g \circ f)(x) \triangleq$ g[f(x)].
- The *restriction* of the function f on $A \subset \mathscr{D}_f$ is the function denoted by $f_{|_A}$ and is
- defined by $\forall x \in A$, $f_{|_A}(x) \triangleq f(x)$. The *extension* of the function f on $A \supset \mathscr{D}_f$ is a function g such that $\forall x \in \mathscr{D}_f$, $g_{|_{\mathscr{D}_f}}(x) =$ f(x).
- *f* is a constant function if $\exists c \in \mathbb{R} : \forall x \in \mathcal{D}_f, \quad f(x) = c.$

1.2.2 Parity and periodicity

Let $f \in \mathscr{F}(\mathscr{D}_f; \mathbb{R})$.

• *f* is a *periodic* function if $\exists T \in \mathbb{R} : \forall x \in \mathcal{D}_f, [x + T \in \mathcal{D}_f] \land [f(x + T) = f(x)].$

In general the least positive number T such that $\forall x \in \mathscr{D}_f$, f(x+T) = f(x) is called the *period* of the function f, and we can say f is T-periodic.

• *f* is an *even* function if $\forall x \in \mathscr{D}_f$, $[-x \in \mathscr{D}_f] \land [f(-x) = f(x)].$

• *f* is an *odd* function if $\forall x \in \mathscr{D}_f$, $[-x \in \mathscr{D}_f] \wedge [f(-x) = -f(x)].$

 $\widehat{\mathbb{Q}}_f \text{ is symmetric about the origin iff } \forall x \in \mathbb{R}, \quad x \in \mathscr{D}_f \Longrightarrow -x \in \mathscr{D}_f.$

Theorem 1.2.1 Each function $f : \mathscr{D} \subseteq \mathbb{R} \to \mathbb{R}$ can be written as a sum of two real functions defined on \mathscr{D} , one is odd and the other is even.

1.2.3 Sens of variation

Definition 1.2.2 Let f and g be two functions with the same domain \mathcal{D} , then

$$f\left(\begin{array}{c} = \\ \leq \\ < \\ \geq \\ > \end{array} \right) g \iff \forall x \in \mathscr{D}, \quad f(x) \left(\begin{array}{c} = \\ \leq \\ < \\ \geq \\ > \end{array} \right) g(x).$$

Definition 1.2.3 Let *f* be real function on $\mathscr{D}_f \subseteq \mathbb{R}$.

f

- *f* is called *nondecreasing (increasing)* or (increasing (strictly increasing)) on $\mathscr{I} \subset \mathscr{D}$ if $\forall x_1, x_2 \in \mathscr{I}$, $x_1 < x_2 \implies f(x_1) \leq (<)f(x_2)$. If $\mathscr{I} = \mathscr{D}_f$, then we say only *f* is (strictly) increasing
- *f* is called *nonincreasing (decreasing)* or (decreasing (strictly decreasing)) on $\mathscr{I} \subset \mathscr{D}$ if $\forall x_1, x_2 \in \mathscr{I}$, $x_1 < x_2 \implies f(x_1) \ge (>)f(x_2)$. If $\mathscr{I} = \mathscr{D}_f$, then we say only *f* is (strictly) decreasing
- *f* is called (*strictly*) *monotone* ((strictly) monotonic) on *I* ⊂ *D_f* if *f* is (strictly) increasing or (strictly) decreasing on *I* ⊂ *D_f*. If *I* = *D_f*, then we say only *f* is (*strictly*) *monotone*

Theorem 1.2.2 A real function of one real variable f is bijective on a subset $\mathscr{I} \subset \mathscr{D}_f$ iff f is (strictly) monotone on \mathscr{I} .

R If $\mathscr{I} = \mathscr{D}_f$ we say only f is bijective.

1.2.4 Bounded functions

Definition 1.2.4 Let $f : \mathscr{D}_f \to \mathbb{R}$ be a function. We say that

- *f* is bounded above on D_f if there is M ∈ R such that ∀x ∈ D_f, f(x) ≤ M. M is called an upper bound for *f*. The smallest upper bound is called the *least upper bound (lub)* or (*supremum*) and is denoted by sup *f* (sup_{x∈D_f} *f*(x) or sup {*f*(x) : x ∈ D_f}). If there exists a ∈ D_f such that *f*(a) = sup *f*, then we say that *f* attains its upper bound and *f*(a) is called also maximum, we can write *f*(a) = max *f* (max_{x∈D_f} *f*(x) or max {*f*(x) : x ∈ D_f}).
- f is bounded below on \mathscr{D}_f if there is $m \in \mathbb{R}$ such that $\forall x \in \mathscr{D}_f$, $m \leq f(x)$.

m is called a *lower bound* for *f*. The biggest lower bound is called the *great*est lower bound (glb) or (infemum) and is denoted by $\inf f(\inf_{x \in \mathscr{D}_f} f(x))$ or $\inf \{f(x) : x \in \mathcal{D}_f\}$. If there exists $b \in \mathcal{D}_f$ such that $f(b) = \inf f$, then we say that f attains its lower bound and f(b) is called also minimum, we can write $f(b) = \min f (\min_{x \in \mathscr{D}_f} f(x) \text{ or } \min \{ f(x) : x \in \mathscr{D}_f \}).$

- f is bounded on \mathscr{D}_f if it is bounded above on \mathscr{D}_f and also bounded below on \mathscr{D}_f .
- f is bounded iff $\exists \delta > 0 : \forall x \in \mathcal{D}_f$, $|f(x)| \leq \delta$. δ is called the *bound* for the absolute R value of f.

f is a bounded function iff $f(\mathcal{D}_f)$ is a bounded set.

1.2.5 The floor function

The *floor* function *f* is defined on \mathbb{R} by $f: x \mapsto f(x) = |x|$.

1.2.6 **Elementary functions**

Absolute value function

The absolute value function f is defined on \mathbb{R} by $f: x \mapsto f(x) = |x|$.

Power functions

Let r be a non-zero rational number. The *power function* f is the function $f: x \mapsto f(x) = x^r$.

- If $r \in \mathbb{N}$, then the definition domain of f is \mathbb{R} . If n is even (resp. odd), the f is even (resp. odd) and f is increasing on $[0;\infty)$, i.e., f is a bijection from $[0;\infty)$ on it self.
- If $r \in \mathbb{Z}_{-}$, then the definition domain of f is $\mathbb{R} \setminus \{0\}$. If n is even (resp. odd), the f is even (resp. odd) and f is decreasing on $(0; \infty)$, i.e., f is a bijection from $(0; \infty)$ on it self.
- If r = ^p/_q with CGD {p;q} = 1, then
 a) q is even, then the definition domain of f is [0;∞).
 - b) q is odd, then the definition domain of f is \mathbb{R} .
 - c) p is even (resp. odd), then f is even (resp. odd). The restriction of f on $[0;\infty)$ on it self is a bijection.
- If $r = -\frac{p}{q}$ with $CGD\{p;q\} = 1$, then
 - a) q is even, then the definition domain of f is $(0;\infty)$.
 - b) q is odd, then the definition domain of f is $\mathbb{R} \setminus \{0\}$.
 - c) p is even (resp. odd), then f is even (resp. odd). The restriction of f on $(0;\infty)$ on it self is a bijection.

Properties 1.2.1 Let $x, y \in \mathbb{R} \setminus \{0\}$ and $p, q \in \mathbb{Q}_+ \setminus \{0\}$

- $x^{p}x^{q} = x^{p+q};$
- $\frac{x^p}{x^q} = x^{p-q};$
- $(x^p)^q = x^{pq};$
- $x^p y^p = (xy)^p$;
- $x^0 = 1$:

Polynomial functions

Let *n* be a natural number and a_k , $(k = \overline{0, n})$ be real numbers. The *polynomial function* is the function $x \mapsto \sum_{k=0}^{n} a_k x^k$. If $a_n \neq 0$, then *n* is called the *degree* (d°) of the polynomial function. The definition domain of the polynomial functions is \mathbb{R} . The constants a_k , $(k = \overline{0, n})$ are called the coefficients of the function polynomial.

Properties 1.2.2 Let *P* and *Q* be two polynomial functions, *n* and *m* be two natural numbers. Put $d^{\circ}P = n$ and $d^{\circ}Q = m$.

- If n = 1, then P is called linear function.
- If n = 2, then *P* is called quadratic function.
- If n = 3, then *P* is called cubic function.
- $P \pm Q$ is a polynomial function. If $n \neq m$, then $d^{\circ}(P \pm Q) = \max\{n; m\}$
- $P \cdot Q$ is a polynomial function of degree n + m.

Theorem 1.2.3 — Real Fundamental Theorem of Algebra. Every nonzero polynomial with real coefficients can be factored as a finite product of linear polynomials and quadratic polynomials with negative discriminants.

Corollary 1.2.4 Let $l, k \in \mathbb{N}$. For all $i \in [0; l]$, $j \in [0; k]$, let n_i , m_j be natural numbers, a_i , p_j , q_j be real numbers such that $p_j^2 - 4q_j < 0$ and let R be a non-constant polynomial function. Then

 $\forall x \in \mathbb{R},$

$$R(x) = \begin{bmatrix} \prod_{i=0}^{l} (x-a_i)^{n_i} \\ \lor \\ \prod_{j=0}^{k} (x^2 + p_j x + q_j)^{m_j} \\ \lor \\ \prod_{i=0}^{n} (x-a_i)^{n_i} \prod_{j=0}^{k} (x^2 + p_j x + q_j)^{m_j} \end{bmatrix}$$

Rational functions

Let *n* and *m* be two natural numbers, *P* and *Q* be two polynomial functions of degrees *n* and *m* respectively. The *rational function* is the function $x \mapsto \frac{P(x)}{Q(x)}$ (For an *x* well defined, P(x)/Q(x) is called a rational fraction). The *degree* of the rational function is denoted by n - m. The definition domain of P/Q is $\mathbb{R} \setminus \{x \in \mathbb{R} : Q(x) = 0\}$. If n<m, then the ration function P/Q is called *proper*, and if $n \ge m$, then P/Q is called *improper rational function*.

Theorem 1.2.5 Any improper rational function P/Q can be decomposed as the sum of a polynomial function and a proper rational function, i.e.,

$$\frac{P}{Q} = R + \frac{S}{T},$$

with *R* is a polynomial function and S/T is a proper rational function ($d^{\circ}S < d^{\circ}T$).

Let *a*, *A*, α , β , *p*, *q* be real numbers such that $p^2 - 4q < 0$. We call *partial function* any proper rational function that is written as

- $x \mapsto \frac{A}{x-a}$; (linear factor)
- $x \mapsto \frac{\alpha x + \beta}{x^2 + px + q}$; (quadratic irreducible factor)

For $x \in \mathbb{R}$ well defined the numbers $\frac{A}{x-a}$ and $\frac{\alpha x+\beta}{x^2+px+q}$ are called *partial fractions*.

Theorem 1.2.6 — Partial Fraction Decomposition. Every proper rational function can be decomposed as the sum of finitely many rational functions of the form

$$\frac{A}{(x-a)^n}$$
 and $\frac{\alpha x + \beta}{(x^2 + px + q)^m}$ (for $x \in \mathbb{R}$ well defined),

where *A*,*a* and α , β ,*p*,*q* are real numbers such that $p^2 - 4q < 0$; and *n*,*m* are natural numbers, i.e., let *P*/*Q* be a proper fractional function. Then, under the hypothesis of Corollary 1.2.4 we get

 $\forall x \in \mathscr{D}_{P/Q},$

12

1. If $Q(x) = \prod_{i=1}^{l} (x-a_i)^{n_i}$, then $\exists A_{i,j} \in \mathbb{R} \ (i=\overline{1,l}; \ j=\overline{1,\max_{i\in[[1;l]]} n_i}):$

$$\frac{P(x)}{Q(x)} = \sum_{i=1}^{l} \sum_{j=1}^{n_i} \frac{A_{i,j}}{(x-a_i)^j}.$$

2. If
$$Q(x) = \prod_{j=1}^{k} (x^2 + p_j x + q_j)^{m_j}, (p_j^2 - 4q_j < 0)$$
, then
 $\exists \alpha_{i,j}, \beta_{i,j} \in \mathbb{R} \ (i = \overline{1,k}; \ j = \overline{1,\max_{i \in [[1;k]]} m_i})$:

$$\frac{P(x)}{Q(x)} = \sum_{i=1}^{k} \sum_{j=1}^{m_i} \frac{\alpha_{i,j} x + \beta_{i,j}}{(x^2 + p_i x + q_i)^j}.$$

3. If $Q(x) = \prod_{i=1}^{l} (x - a_i)^{n_i} \prod_{j=1}^{k} (x^2 + p_j x + q_j)^{m_j}$, then $\exists A_{i,j} \in \mathbb{R} \ (i = \overline{1, l}; \ j = \overline{1, \max_{i \in [\![1;l]\!]} n_i})$ and $\exists \alpha_{i,j}, \beta_{i,j} \in \mathbb{R} \ (i = \overline{1, k}; \ j = \overline{1, \max_{i \in [\![1;k]\!]} m_i}):$ $\frac{P(x)}{Q(x)} = \sum_{i=1}^{l} \sum_{j=1}^{n_i} \frac{A_{i,j}}{(x - a_i)^j} + \sum_{i=1}^{k} \sum_{j=1}^{m_i} \frac{\alpha_{i,j} x + \beta_{i,j}}{(x^2 + p_i x + q_i)^j}.$

Exponential and logarithmic functions

Let *a* be a positive number. The *exponential function* is the function $f : x \mapsto f(x) = a^x$. The definition domain of *f* is \mathbb{R} .

• If a > 1, then f is increasing.

- If a < 1, then f is decreasing.
- f is a bijection from \mathbb{R} to $(0;\infty)$.
- The natural exponential function is defined by $x \mapsto e^x$, where $e \approx 2.71828$ is the Euler number.

Properties 1.2.3 Let a, b be positive real numbers and x, y be any real numbers. Then

• $a^0 = 1$ • $a^{x+y} = a^x a^y$ • $a^{-x} = \frac{1}{a^x}$ • $a^{x-y} = \frac{a^x}{a^y}$ • $(a^x)^y = a^{xy}$ • $(ab)^x = a^x b^x$

The inverse of the exponential function $x \mapsto a^x$ is called the *logarithm to the base a function* and defined for all $x \in (0,\infty)$ as the solution of the equation $a^x = b$ (a, b are positive parameters) and is denoted by $g: x \mapsto g(x) = \log_a x$. The domain of definition of g is $(0; \infty)$.

- If a > 1, then g is increasing.
- If a < 1, then f is decreasing.
- f is a bijection from \mathbb{R} to $(0;\infty)$.
- The natural logarithmic function is defined by $x \mapsto \ln x \triangleq \log_e x$.

Properties 1.2.4 Let a, b be positive real numbers and x, y be any positive real numbers. Then

- log_a (a^x) = a^(log_ax) = x.
 log_a 1 = 0.

• $\log_a (xy) = \log_a x + \log_a y$. • $\log_a (x/y) = \log_a x - \log_a y$.

Trigonometric functions and their inverses

The *trigonometric functions* are the functions defined by $x \mapsto \cos x$, $x \mapsto \sin x$, $x \mapsto \tan x$

Properties 1.2.5

- The domain of definition of $\cos is \mathbb{R}$, it is an even function and a 2π -periodic function. The cos is a bijection from $[0; \pi]$ to [-1; 1].
- The domain of definition of sin is \mathbb{R} , it is an odd function and a 2π -periodic function. The sin is a bijection from $\left[-\frac{\pi}{2};\frac{\pi}{2}\right]$ to $\left[-1;1\right]$.
- The domain of definition of $\tan is \mathbb{R} \setminus \{\frac{\pi}{2} + k\pi : k \in \mathbb{Z}\}$, it is an odd function and a π -periodic function. The tan is a bijection from $\left[-\frac{\pi}{2};\frac{\pi}{2}\right]$ to \mathbb{R} .

We define the inverse of the trigonometric functions as:

- The *arccosine* function is the function $\arccos : [-1;1] \rightarrow [0;\pi], x \mapsto \arccos x$ such that $\forall \theta \in [0; \pi]$, $\cos(\arccos \theta) = \arccos(\cos \theta) = \theta$.
- The arcsine function is the function $\arcsin: [-1;1] \to \left[-\frac{\pi}{2}; \frac{\pi}{2}\right], x \mapsto \arcsin x$ such that $\forall \theta \in \left[-\frac{\pi}{2}; \frac{\pi}{2}\right]$, $\sin(\arcsin\theta) = \arcsin(\sin\theta) = \theta$.
- The arctangent function is the function $\arctan : \mathbb{R} \to \left] -\frac{\pi}{2}; \frac{\pi}{2} \right[, x \mapsto \arctan x \text{ such that}$ $\forall \theta \in \left] -\frac{\pi}{2}; \frac{\pi}{2} \right[, \quad \tan(\arctan \theta) = \arctan(\tan \theta) = \theta.$

Hyperbolic functions and their inverses

The hyperbolic functions are the functions defined by : $\cosh : x \mapsto \cosh x \triangleq \frac{e^x + e^{-x}}{2}$ and $\sinh: x \mapsto \sinh x \triangleq \frac{e^x - e^{-x}}{2} \dots$

Conclusion

Elementary functions of a single real variable *x* include:

- All functions obtained by adding, subtracting, multiplying or dividing a finite number of any of the previous functions.
- All functions obtained by root extraction of a polynomial with coefficients in elementary functions.
- All functions obtained by composing a finite number of any of the previously listed functions.