RÉPUBLIQUE ALGÉRIENNE DÉMOCRATIQUE ET POPULAIRE
MINISTÈRE DE L'ENSEIGNEMENT SUPÉRIEUR ET DE LA RECHERCHE SCIENTIFIQUE

Tlemcen University

Contents

1.1 Some properties of \mathbb{R}
1.2 Real functions on \mathbb{R}
1.2.1 Basic properties of real functions
1.2.2 Parity and periodicity . 8
1.2.3 Sens of variation . 9
1.2.4 Bounded functions
1.2.5 The floor function . 10
1.2.6 Elementary functions . 10

1. Generalities

Contents

1.1 Some properties of \mathbb{R}

1.2 Real functions on \mathbb{R}
1.2.1 Basic properties of real functions

6
1.2.2 Parity and periodicity . 8
1.2.3 Sens of variation 9
1.2.4 Bounded functions 9
1.2.5 The floor function . 10
1.2.6 Elementary functions . 10

1.1 Some properties of \mathbb{R}

Definition 1.1.1 Let A be a non-empty subset of \mathbb{R}.

- We say that A is bounded above if $\exists M \in \mathbb{R}: \forall a \in A, \quad a \leq M . M$ is called an upper bound (majorant) for A and it is not unique. We call the smallest upper bound supremum (least upper bound (lub)) of the set A and it is denoted by $\sup A$ $\left(\sup _{x \in A} x \triangleq \sup \{x: x \in A\}\right)$.
- We say that A is bounded below if $\exists m \in \mathbb{R}: \forall a \in A, \quad m \leq a$. m is called a lower
bound (minorant) for A. We call the biggest lower bound infemum (greatest lower bound $(\mathrm{glb}))$ of the set A and it is denoted by $\inf A\left(\inf _{x \in A} x \triangleq \inf \{x: x \in A\}\right)$.
- We say that A is bounded if a is bounded above and bounded below. If A is not a bounded set, then we say that A is unbounded.
(i) If $\sup A \in A$, then the $\sup A$ is called maximum of A and denoted by $\max A$ $\left(\max _{x \in A} x \triangleq \max \{x: x \in A\}\right)$.
(ii) If $\inf A \in A$, then the $\inf A$ is called minimum of A and denoted by $\min A$ $\left(\min _{x \in A} x \triangleq \min \{x: x \in A\}\right)$.
(iii) $\sup \emptyset \triangleq-\infty$ and $\inf \emptyset \triangleq \infty$

Theorem 1.1.1 Let A be an non-empty subset of \mathbb{R}.
i) If A is bounded above, then $\sup A$ exists and it is unique. If A contains a biggest element $\max A$, then $\sup A=\max A$.
ii) If A is bounded below, then $\inf A$ exists and it is unique. If A contains a smallest element $\min A$, then $\inf A=\min A$.

Theorem 1.1.2 Let A be an non-empty subset of \mathbb{R}.
i) If A is bounded above, then a real number M is called $\sup A$ iff

$$
\left\{\begin{array}{l}
M \text { is an upper bound, } \\
\forall \varepsilon>0, \exists x \in A: \quad x>M-\varepsilon .
\end{array}\right.
$$

ii) If A is bounded below, then a real number m is called $\inf A \operatorname{iff}$

$$
\left\{\begin{array}{l}
m \text { is a lower bound, } \\
\forall \varepsilon>0, \exists x \in A: \quad x<m+\varepsilon .
\end{array}\right.
$$

Definition 1.1.2 Let $x \in \mathbb{R}$. The absolute value of x is the nonnegative number $|x|$ defined by

$$
|x| \triangleq \max \{x ;-x\} \triangleq \begin{cases}x & \text { if } x \geq 0 \\ -x & \text { if } x<0\end{cases}
$$

Properties 1.1.1

(a) $\forall a, b \in \mathbb{R}, \quad|a+b| \leq|a|+|b| ; \quad$ (triangle inequality)
(b) $\forall a, b \in \mathbb{R}, \quad| | a|-|b|| \leq|a-b|$;
(c) $\forall a, b \in \mathbb{R}, \quad|a b|=|a||b|$;

Definition 1.1.3 Let $x \in \mathbb{R}$. The floor of x, denoted by $\lfloor x\rfloor([x]$, floor $(x))$, is the greatest
integer less than or equal to x, i.e.,

$$
\lfloor x\rfloor \triangleq \max \{n \in \mathbb{Z}: n \leq x\}
$$

Theorem 1.1.3 For all real number x, the floor of x is the unique integer that verifies

$$
x-1<\lfloor x\rfloor \leq x
$$

Properties 1.1.2 For all real number x, we have

- $\lfloor x\rfloor \leq x<\lfloor x\rfloor+1$;
- $\forall n \in \mathbb{Z}, \quad\lfloor x+n\rfloor=\lfloor x\rfloor+n$;
- $\forall y \in \mathbb{R}, \quad\lfloor x+y\rfloor=\lfloor x\rfloor+\lfloor y\rfloor+\varepsilon(x, y), \quad$ with $\varepsilon(x, y) \in\{0 ; 1\}$

1.2 Real functions on \mathbb{R}

1.2.1 Basic properties of real functions

Definition 1.2.1 A function $f: X \rightarrow Y$ is said

- real function if $Y \subseteq \mathbb{R}$;
- function of one real variable if $X \triangleq \mathscr{D}_{f} \subseteq \mathbb{R}$

Let f and g be real functions.

- $\forall \lambda \in \mathbb{R}, \quad \lambda f$ is the real function defined by $\forall x \in \mathscr{D}_{f}, \quad(\lambda f)(x) \triangleq \lambda f(x)$.
- $f+g$ is the real function defined by $\forall x \in \mathscr{D}_{f} \cap \mathscr{D}_{g}, \quad(f+g)(x) \triangleq f(x)+g(x)$.
- $f g$ is the real function defined by $\forall x \in \mathscr{D}_{f} \cap \mathscr{D}_{g}, \quad(f g)(x) \triangleq f(x) g(x)$.
- f / g is the real function defined by $\forall x \in\left(\mathscr{D}_{f} \cap \mathscr{D}_{g}\right) \backslash\{x \in \mathbb{R}: g(x)=0\},(f / g)(x) \triangleq$ $\frac{f(x)}{g(x)}$.
- $g \circ f$ is the real function defined by $\forall x \in \mathscr{D}_{f} \cap\left\{x \in \mathbb{R}: f(x) \in \mathscr{D}_{g}\right\},(g \circ f)(x) \triangleq$ $g[f(x)]$.
- The restriction of the function f on $A \subset \mathscr{D}_{f}$ is the function denoted by $f_{\left.\right|_{A}}$ and is defined by $\forall x \in A, \quad f_{\mid A}(x) \triangleq f(x)$.
- The extension of the function f on $A \supset \mathscr{D}_{f}$ is a function g such that $\forall x \in \mathscr{D}_{f}, \quad g_{\left.\right|_{f}}(x)=$ $f(x)$.
- f is a constant function if $\exists c \in \mathbb{R}: \forall x \in \mathscr{D}_{f}, \quad f(x)=c$.

1.2.2 Parity and periodicity

Let $f \in \mathscr{F}\left(\mathscr{D}_{f} ; \mathbb{R}\right)$.

- f is a periodic function if $\exists T \in \mathbb{R}: \forall x \in \mathscr{D}_{f},\left[x+T \in \mathscr{D}_{f}\right] \wedge[f(x+T)=f(x)]$.
(R) In general the least positive number T such that $\forall x \in \mathscr{D}_{f}, \quad f(x+T)=f(x)$ is called the period of the function f, and we can say f is T-periodic.
- f is an even function if $\forall x \in \mathscr{D}_{f}, \quad\left[-x \in \mathscr{D}_{f}\right] \wedge[f(-x)=f(x)]$.
- f is an odd function if $\forall x \in \mathscr{D}_{f}, \quad\left[-x \in \mathscr{D}_{f}\right] \wedge[f(-x)=-f(x)]$.
(R) \mathscr{D}_{f} is symmetric about the origin iff $\forall x \in \mathbb{R}, \quad x \in \mathscr{D}_{f} \Longrightarrow-x \in \mathscr{D}_{f}$.

Theorem 1.2.1 Each function $f: \mathscr{D} \subseteq \mathbb{R} \rightarrow \mathbb{R}$ can be written as a sum of two real functions defined on \mathscr{D}, one is odd and the other is even.

1.2.3 Sens of variation

Definition 1.2.2 Let f and g be two functions with the same domain \mathscr{D}, then

$$
f\left(\begin{array}{l}
= \\
\leq \\
< \\
\geq \\
>
\end{array}\right) g \Longleftrightarrow \forall x \in \mathscr{D}, \quad f(x)\left(\begin{array}{l}
= \\
\leq \\
< \\
\geq \\
>
\end{array}\right) g(x) .
$$

Definition 1.2.3 Let f be real function on $\mathscr{D}_{f} \subseteq \mathbb{R}$.

- f is called nondecreasing (increasing) or (increasing (strictly increasing)) on $\mathscr{I} \subset \mathscr{D}$ if $\forall x_{1}, x_{2} \in \mathscr{I}, \quad x_{1}<x_{2} \Longrightarrow f\left(x_{1}\right) \leq(<) f\left(x_{2}\right)$. If $\mathscr{I}=\mathscr{D}_{f}$, then we say only f is (strictly) increasing
- f is called nonincreasing (decreasing) or (decreasing (strictly decreasing)) on $\mathscr{I} \subset \mathscr{D}$ if $\forall x_{1}, x_{2} \in \mathscr{I}, \quad x_{1}<x_{2} \Longrightarrow f\left(x_{1}\right) \geq(>) f\left(x_{2}\right)$. If $\mathscr{I}=\mathscr{D}_{f}$, then we say only f is (strictly) decreasing
- f is called (strictly) monotone ((strictly) monotonic) on $\mathscr{I} \subset \mathscr{D}_{f}$ if f is (strictly) increasing or (strictly) decreasing on $\mathscr{I} \subset \mathscr{D}_{f}$. If $\mathscr{I}=\mathscr{D}_{f}$, then we say only f is (strictly) monotone

Theorem 1.2.2 A real function of one real variable f is bijective on a subset $\mathscr{I} \subset \mathscr{D}_{f}$ iff f is (strictly) monotone on \mathscr{I}.

R If $\mathscr{I}=\mathscr{D}_{f}$ we say only f is bijective.

1.2.4 Bounded functions

 Definition 1.2.4 Let $f: \mathscr{D}_{f} \rightarrow \mathbb{R}$ be a function. We say that- f is bounded above on \mathscr{D}_{f} if there is $M \in \mathbb{R}$ such that $\forall x \in \mathscr{D}_{f}, \quad f(x) \leq M$. M is called an upper bound for f. The smallest upper bound is called the least upper bound (lub) or (supremum) and is denoted by $\sup f\left(\sup _{x \in \mathscr{D}_{f}} f(x)\right.$ or $\sup \left\{f(x): x \in \mathscr{D}_{f}\right\}$). If there exists $a \in \mathscr{D}_{f}$ such that $f(a)=\sup f$, then we say that f attains its upper bound and $f(a)$ is called also maximum, we can write $f(a)=\max f\left(\max _{x \in \mathscr{D}_{f}} f(x)\right.$ or $\left.\max \left\{f(x): x \in \mathscr{D}_{f}\right\}\right)$.
- f is bounded below on \mathscr{D}_{f} if there is $m \in \mathbb{R}$ such that $\forall x \in \mathscr{D}_{f}, \quad m \leq f(x)$.
m is called a lower bound for f. The biggest lower bound is called the greatest lower bound (glb) or (infemum) and is denoted by $\inf f\left(\inf _{x \in \mathscr{D}_{f}} f(x)\right.$ or $\left.\inf \left\{f(x): x \in \mathscr{D}_{f}\right\}\right)$. If there exists $b \in \mathscr{D}_{f}$ such that $f(b)=\inf f$, then we say that f attains its lower bound and $f(b)$ is called also minimum, we can write $f(b)=\min f\left(\min _{x \in \mathscr{D}_{f}} f(x)\right.$ or $\left.\min \left\{f(x): x \in \mathscr{D}_{f}\right\}\right)$.
- f is bounded on \mathscr{D}_{f} if it is bounded above on \mathscr{D}_{f} and also bounded below on \mathscr{D}_{f}.
f is bounded $\operatorname{iff} \exists \delta>0: \forall x \in \mathscr{D}_{f}, \quad|f(x)| \leq \delta . \delta$ is called the bound for the absolute value of f.
f is a bounded function iff $f\left(\mathscr{D}_{f}\right)$ is a bounded set.

1.2.5 The floor function

The floor function f is defined on \mathbb{R} by $f: x \mapsto f(x)=\lfloor x\rfloor$.

1.2.6 Elementary functions

Absolute value function

The absolute value function f is defined on \mathbb{R} by $f: x \mapsto f(x)=|x|$.

Power functions

Let r be a non-zero rational number. The power function f is the function $f: x \mapsto f(x)=x^{r}$.

- If $r \in \mathbb{N}$, then the definition domain of f is \mathbb{R}. If n is even (resp. odd), the f is even (resp. odd) and f is increasing on $[0 ; \infty)$, i.e., f is a bijection from $[0 ; \infty)$ on it self.
- If $r \in \mathbb{Z}_{-}$, then the definition domain of f is $\mathbb{R} \backslash\{0\}$. If n is even (resp. odd), the f is even (resp. odd) and f is decreasing on $(0 ; \infty)$, i.e., f is a bijection from $(0 ; \infty)$ on it self.
- If $r=\frac{p}{q}$ with $C G D\{p ; q\}=1$, then
a) q is even, then the definition domain of f is $[0 ; \infty)$.
b) q is odd, then the definition domain of f is \mathbb{R}.
c) p is even (resp. odd), then f is even (resp. odd). The restriction of f on $[0 ; \infty)$ on it self is a bijection.
- If $r=-\frac{p}{q}$ with $C G D\{p ; q\}=1$, then
a) q is even, then the definition domain of f is $(0 ; \infty)$.
b) q is odd, then the definition domain of f is $\mathbb{R} \backslash\{0\}$.
c) p is even (resp. odd), then f is even (resp. odd). The restriction of f on $(0 ; \infty)$ on it self is a bijection.
Properties 1.2.1 Let $x, y \in \mathbb{R} \backslash\{0\}$ and $p, q \in \mathbb{Q}_{+} \backslash\{0\}$
- $x^{p} x^{q}=x^{p+q}$;
- $\frac{x^{p}}{x^{q}}=x^{p-q}$;
- $\left(x^{p}\right)^{q}=x^{p q}$;
- $x^{p} y^{p}=(x y)^{p}$;
- $x^{0}=1$;

Polynomial functions

Let n be a natural number and $a_{k},(k=\overline{0, n})$ be real numbers. The polynomial function is the function $x \mapsto \sum_{k=0}^{n} a_{k} x^{k}$. If $a_{n} \neq 0$, then n is called the degree $\left(\mathrm{d}^{\circ}\right)$ of the polynomial function. The definition domain of the polynomial functions is \mathbb{R}. The constants $a_{k},(k=\overline{0, n})$ are called the coefficients of the function polynomial.

Properties 1.2.2 Let P and Q be two polynomial functions, n and m be two natural numbers. Put $\mathrm{d}^{\circ} P=n$ and $\mathrm{d}^{\circ} Q=m$.

- If $n=1$, then P is called linear function.
- If $n=2$, then P is called quadratic function.
- If $n=3$, then P is called cubic function.
- $P \pm Q$ is a polynomial function. If $n \neq m$, then $\mathrm{d}^{\circ}(P \pm Q)=\max \{n ; m\}$
- $P \cdot Q$ is a polynomial function of degree $n+m$.

Theorem 1.2.3 - Real Fundamental Theorem of Algebra. Every nonzero polynomial with real coefficients can be factored as a finite product of linear polynomials and quadratic polynomials with negative discriminants.

Corollary 1.2.4 Let $l, k \in \mathbb{N}$. For all $i \in \llbracket 0 ; l \rrbracket, j \in \llbracket 0 ; k \rrbracket$, let n_{i}, m_{j} be natural numbers, a_{i}, p_{j}, q_{j} be real numbers such that $p_{j}^{2}-4 q_{j}<0$ and let R be a non-constant polynomial function. Then
$\forall x \in \mathbb{R}$,

$$
R(x)=\left[\begin{array}{l}
\prod_{i=0}^{l}\left(x-a_{i}\right)^{n_{i}} \\
\vee \\
\prod_{j=0}^{k}\left(x^{2}+p_{j} x+q_{j}\right)^{m_{j}} \\
\vee \\
\prod_{i=0}^{n}\left(x-a_{i}\right)^{n_{i}} \prod_{j=0}^{k}\left(x^{2}+p_{j} x+q_{j}\right)^{m_{j}}
\end{array}\right.
$$

Rational functions

Let n and m be two natural numbers, P and Q be two polynomial functions of degrees n and m respectively. The rational function is the function $x \mapsto \frac{P(x)}{Q(x)}$ (For an x well defined, $P(x) / Q(x)$ is called a rational fraction). The degree of the rational function is denoted by $n-m$. The definition domain of P / Q is $\mathbb{R} \backslash\{x \in \mathbb{R}: Q(x)=0\}$. If $n<m$, then the ration function P / Q is called proper, and if $n \geq m$, then P / Q is called improper rational function.

Theorem 1.2.5 Any improper rational function P / Q can be decomposed as the sum of a polynomial function and a proper rational function, i.e.,

$$
\frac{P}{Q}=R+\frac{S}{T}
$$

with R is a polynomial function and S / T is a proper rational function ($\mathrm{d}^{\circ} S<\mathrm{d}^{\circ} T$).

Let $a, A, \alpha, \beta, p, q$ be real numbers such that $p^{2}-4 q<0$. We call partial function any proper rational function that is written as

- $x \mapsto \frac{A}{x-a}$; (linear factor)
- $x \mapsto \frac{\alpha x+\beta}{x^{2}+p x+q}$; (quadratic irreducible factor)

For $x \in \mathbb{R}$ well defined the numbers $\frac{A}{x-a}$ and $\frac{\alpha x+\beta}{x^{2}+p x+q}$ are called partial fractions.
Theorem 1.2.6 - Partial Fraction Decomposition. Every proper rational function can be decomposed as the sum of finitely many rational functions of the form

$$
\frac{A}{(x-a)^{n}} \text { and } \frac{\alpha x+\beta}{\left(x^{2}+p x+q\right)^{m}} \quad(\text { for } x \in \mathbb{R} \text { well defined })
$$

where A, a and α, β, p, q are real numbers such that $p^{2}-4 q<0$; and n, m are natural numbers, i.e., let P / Q be a proper fractional function. Then, under the hypothesis of Corollary 1.2 .4 we get
$\forall x \in \mathscr{D}_{P / Q}$,

1. If $Q(x)=\prod_{i=1}^{l}\left(x-a_{i}\right)^{n_{i}}$, then
$\exists A_{i, j} \in \mathbb{R}\left(i=\overline{1, l} ; j=\overline{1, \max _{i \in \llbracket 1 ; l \rrbracket} n_{i}}\right):$

$$
\frac{P(x)}{Q(x)}=\sum_{i=1}^{l} \sum_{j=1}^{n_{i}} \frac{A_{i, j}}{\left(x-a_{i}\right)^{j}}
$$

2. If $Q(x)=\prod_{j=1}^{k}\left(x^{2}+p_{j} x+q_{j}\right)^{m_{j}},\left(p_{j}^{2}-4 q_{j}<0\right)$, then

$$
\exists \alpha_{i, j}, \beta_{i, j} \in \mathbb{R}\left(i=\overline{1, k} ; j=\overline{1, \max _{i \in \llbracket 1 ; k \rrbracket} m_{i}}\right):
$$

$$
\frac{P(x)}{Q(x)}=\sum_{i=1}^{k} \sum_{j=1}^{m_{i}} \frac{\alpha_{i, j} x+\beta_{i, j}}{\left(x^{2}+p_{i} x+q_{i}\right)^{j}}
$$

3. If $Q(x)=\prod_{i=1}^{l}\left(x-a_{i}\right)^{n_{i}} \prod_{j=1}^{k}\left(x^{2}+p_{j} x+q_{j}\right)^{m_{j}}$, then

$$
\begin{aligned}
& \exists A_{i, j} \in \mathbb{R}\left(i=\overline{1, l} ; j=\overline{1, \max _{i \in \llbracket 1 ; l \rrbracket} n_{i}}\right) \text { and } \\
& \exists \alpha_{i, j}, \beta_{i, j} \in \mathbb{R}\left(i=\overline{1, k} ; j=\overline{1, \max _{i \in \llbracket 1 ; k \rrbracket} m_{i}}\right): \\
& \frac{P(x)}{Q(x)}=\sum_{i=1}^{l} \sum_{j=1}^{n_{i}} \frac{A_{i, j}}{\left(x-a_{i}\right)^{j}}+\sum_{i=1}^{k} \sum_{j=1}^{m_{i}} \frac{\alpha_{i, j} x+\beta_{i, j}}{\left(x^{2}+p_{i} x+q_{i}\right)^{j}} .
\end{aligned}
$$

Exponential and logarithmic functions

Let a be a positive number. The exponential function is the function $f: x \mapsto f(x)=a^{x}$. The definition domain of f is \mathbb{R}.

- If $a>1$, then f is increasing.
- If $a<1$, then f is decreasing.
- f is a bijection from \mathbb{R} to $(0 ; \infty)$.
- The natural exponential function is defined by $x \mapsto e^{x}$, where $e \approx 2.71828$ is the Euler number.

Properties 1.2.3 Let a, b be positive real numbers and x, y be any real numbers. Then

- $a^{0}=1$
- $a^{x+y}=a^{x} a^{y}$
- $\left(a^{x}\right)^{y}=a^{x y}$
- $a^{-x}=\frac{1}{a^{x}}$
- $a^{x-y}=\frac{a^{x}}{a^{y}}$
- $(a b)^{x}=a^{x} b^{x}$

The inverse of the exponential function $x \mapsto a^{x}$ is called the logarithm to the base a function and defined for all $x \in(0 ; \infty)$ as the solution of the equation $a^{x}=b(a, b$ are positive parameters) ans is denoted by $g: x \mapsto g(x)=\log _{a} x$. The domain of definition of g is $(0 ; \infty)$.

- If $a>1$, then g is increasing.
- If $a<1$, then f is decreasing.
- f is a bijection from \mathbb{R} to $(0 ; \infty)$.
- The natural logarithmic function is defined by $x \mapsto \ln x \triangleq \log _{e} x$.

Properties 1.2.4 Let a, b be positive real numbers and x, y be any positive real numbers. Then

- $\log _{a}\left(a^{x}\right)=a^{\left(\log _{a} x\right)}=x . \quad \bullet \log _{a}(x y)=\log _{a} x+\log _{a} y$.
- $\log _{a} 1=0$.
- $\log _{a}(x / y)=\log _{a} x-\log _{a} y$.

Trigonometric functions and their inverses

The trigonometric functions are the functions defined by $x \mapsto \cos x, x \mapsto \sin x, x \mapsto \tan x \ldots$.
Properties 1.2.5

- The domain of definition of \cos is \mathbb{R}, it is an even function and a 2π-periodic function. The \cos is a bijection from $[0 ; \pi]$ to $[-1 ; 1]$.
- The domain of definition of \sin is \mathbb{R}, it is an odd function and a 2π-periodic function. The \sin is a bijection from $\left[-\frac{\pi}{2} ; \frac{\pi}{2}\right]$ to $[-1 ; 1]$.
- The domain of definition of \tan is $\mathbb{R} \backslash\left\{\frac{\pi}{2}+k \pi: k \in \mathbb{Z}\right\}$, it is an odd function and a π-periodic function. The \tan is a bijection from $]-\frac{\pi}{2} ; \frac{\pi}{2}[$ to \mathbb{R}.
We define the inverse of the trigonometric functions as:
- The arccosine function is the function $\arccos :[-1 ; 1] \rightarrow[0 ; \pi], x \mapsto \arccos x$ such that $\forall \theta \in[0 ; \pi], \quad \cos (\arccos \theta)=\arccos (\cos \theta)=\theta$.
- The arcsine function is the function $\arcsin :[-1 ; 1] \rightarrow\left[-\frac{\pi}{2} ; \frac{\pi}{2}\right], x \mapsto \arcsin x \operatorname{such}$ that $\forall \theta \in\left[-\frac{\pi}{2} ; \frac{\pi}{2}\right], \quad \sin (\arcsin \theta)=\arcsin (\sin \theta)=\theta$.
- The arctangent function is the function $\arctan : \mathbb{R} \rightarrow]-\frac{\pi}{2} ; \frac{\pi}{2}[, x \mapsto \arctan x$ such that $\forall \theta \in]-\frac{\pi}{2} ; \frac{\pi}{2}[, \quad \tan (\arctan \theta)=\arctan (\tan \theta)=\theta$.

Hyperbolic functions and their inverses

The hyperbolic functions are the functions defined by : $\cosh : x \mapsto \cosh x \triangleq \frac{e^{x}+e^{-x}}{2}$ and $\sinh : x \mapsto \sinh x \triangleq \frac{e^{x}-e^{-x}}{2} \ldots$.

Conclusion

Elementary functions of a single real variable x include:

- All functions obtained by adding, subtracting, multiplying or dividing a finite number of any of the previous functions.
- All functions obtained by root extraction of a polynomial with coefficients in elementary functions.
- All functions obtained by composing a finite number of any of the previously listed functions.

