TP6 Arrays

Ex 6.1 Separate odd and even numbers

We have a one-dimensional array of integers T .

1. Write a function EnterTab that takes three parameters as input; an array T of integers, an integer N that will store the size of the array and an integer NMAX. The function reads the size N and the elements of the array T . The size N must be less than NMAX.

Example :

After calling EnterTab ($\mathrm{T}, \& \mathrm{~N}, 10$); the function will behave as follows:

Give the size of the array ($\max =10$): 11 The size of the array must be less than 10 . Give the size of the array ($\max =10$): 4
$\mathrm{T}[0]$: 17

T[1] : 35
T[2]: 23
T[3] : 9
2. Write a function OddEven that takes three arrays as input T, E, and O and then fills the two arrays, E with even numbers and O with odd numbers.

Example : Let the following array T :

$\mathrm{T}:$| -1 | 9 | 5 | 2 | 0 | -3 | 12 | -6 | 7 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

The function OddEven fills the two arrays E and O as follows:

$\mathrm{E}:$| 2 | 0 | 12 | -6 |
| :--- | :--- | :--- | :--- |

$0:$| -1 | 9 | 5 | -3 | 7 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- |

3. Write a function DisplayTab with two parameters Tab and n, which displays the n elements of the array of integers Tab.
4. Write a main program that enters the array T and displays the two arrays E and O.

Ex 6.2 Two-dimension array

1. Write a fonction ReadDim with four parameters $L, L M A X, C, C M A X$ that reads the dimensions L and C of a two-dimensional matrix. The dimensions L and C must be less than LMAX respectively CMAX.
2. Write a function ReadMatrix with three parameters MAT, L, and C that reads the components of a matrix MAT of integers and dimensions L and C.
3. Write a function DisplayMatrix with three parameters MAT,L and C which displays the components of the matrix of dimensions L and C.
4. Write a function TranspoMatrix with five parameters MAT, L, LMAX, C, CMAX which transposes the matrix MAT using the swap function. The function TranspoMatrix returns a logical value indicating whether the dimensions of the matrix are such that the transposition can be performed.
5. Write a program that allows you to test all of the above functions.
6. Rewrite the above two functions ReadMatrix and DisplayMatrix in pointer notation (choose the necessary parameters carefully).

Ex 6.3 Pascal's triangle

Write a function that constructs Pascal's triangle of degree N and stores it in a two-dimensional array P. The function should also display the Pascal's triangle exactly as shown in the example below:

Example: $\mathrm{N}=6$:

$\mathrm{i}=0$	$:$	1						
$\mathrm{i}=1:$	1	1						
$\mathrm{i}=2:$	1	2	1					
$\mathrm{i}=3$	$:$	1	3	3	1			
$\mathrm{i}=4:$	1	4	6	4	1			
$\mathrm{i}=5:$	1	5	10	10	5	1		
$\mathrm{i}=6$		1	6	15	20	15	6	1

Method :

- Calculate and display only values up to the main diagonal (included).
- The values of the first column and the main diagonal are equal to 1.
- The other values are calculated from left to right using the following relationship:

$$
P_{i, j}=P_{i-1, j}+P_{i-1, j-1}
$$

Ex 6.4 Magic squares

A magic square is a square matrix of size $n \times n$ such that the sum of each row, each column, and each main diagonal is equal. A magic square is said to be normal if it contains each integer between 1 and n^{2} exactly once.

Example : The following matrix is a normal magic square:

6	7	2
1	5	9
8	3	4

1. Write a function square that returns $\mathbf{1}$ if the array passed as a parameter with its dimensions is a square matrix (which has as many rows as columns), $\mathbf{0}$ otherwise.
2. Write two functions SumRow and SumColumn that take as input an array and a row number (or column number) and return the sum of its the elements.
3. Write two functions SumDiagonal and SumAntiDiagonal, which return the sum of the diagonal (respectively the antidiagonal) of the array passed as a parameter.
4. Write a function MagicSquare that returns $\mathbf{1}$ if the array passed as a parameter is a normal magic square and $\mathbf{0}$ otherwise.
5. Write a program that asks the user to enter an array, and displays whether it is a normal magic square.
