Abou Bekr Belkaid University - Tlemcen Faculty of Sciences Department of Mathematics Academic year: 2023 - 2024 Module: Algebra 2 L1 Math+MI

Tutorial sheet $\textbf{N}^{o}1:$ Vector spaces

Exercise 1

(1) Let $E = \mathbb{R}^{+*}$ be provided with a binary operation \oplus defined by : $\forall a, b \in E : a \oplus b = ab$, and an external law \otimes such that: $\forall a \in E, \forall \lambda \in \mathbb{R} : \lambda \otimes a = a^{\lambda}$.

- Show that (E, \oplus, \otimes) is a \mathbb{R} -vector space.

(2) Let U be the set of sequences $(u_n)_{n \in \mathbb{N}}$ such that $\lim u_n = 0$.

- Show that (U,+,.) is a \mathbb{R} -vector space.

Exercise 2

Among the sets F say which are subspaces of E in each case :

- (1) $E = \mathbb{R}^3$, $F = \{(x, y, z) \in \mathbb{R}^3; x + 2y + 3z = 0\}$. (2) $E = \mathbb{R}^2$, $F = \{(x, y) \in \mathbb{R}^2; 2x + 3y = 0\}$
- (3) $E = \mathbb{R}^2$, $F = \{(x, y) \in \mathbb{R}^2; x^2 + y^2 = 4\}$, (4) $E = \mathbb{R}[X]$, $F = \{P \in \mathbb{R}[X]; \deg(P) = 4\}$

(5)
$$E = \mathbb{R}[X], F = \mathbb{R}_4[X] = \{P \in \mathbb{R}[X]; \deg(P) \le 4\}$$

(6) $E = \mathbb{R}^{\mathbb{N}}$ set of real sequences, $F = \{(u_n) \in E : f \text{ is increasing }\}$

(7)
$$E = \mathcal{F}(\mathbb{R}, \mathbb{R}), F = \{ f \in E; f(1) = 0 \}, (8) E = \mathcal{F}(\mathbb{R}, \mathbb{R}), F = \{ f \in E; f(0) = 1 \}$$
.

Exercise 3

Let u = (1, 2, 3) and v = (2, 3, 1) be two vectors of \mathbb{R}^3 .

(1) Write the vectors $w_1 = (1,3,8)$ and $w_2 = (2,4,5)$ as linear combinations of u and v.

(2) Determine the real number k so that the vector w = (1, k, -2) is a linear combination of u and v.

(3) Determine conditions on the real numbers *a*, *b* and *c* so that the vector W = (a, b, c) can be written as a linear combination of the vectors *u* and *v*.

Exercise 4

Let $U = \{(x, y, z) \in \mathbb{R}^3; x = y = z\}$ and $W = \{(x, y, z) \in \mathbb{R}^3; x = 0\}$

(1) Show that U and W are subspaces of \mathbb{R}^3 .

(2) Show that : $\mathbb{R}^3 = U \oplus W$

Exercise 5

(1) Show that : $F = \{(X-1)^3, (X-1)^2, (X-1), 1\}$ is a basis of $\mathbb{R}_3[X]$.

(2) Find the components of the polynomial $P(X) = 3X^3 - 4X^2 + 2X - 5$ in this basis.

Exercise 6

Let $F = Vect\{u_1, u_2\}$ be the subspace of \mathbb{R}^3 spanned by $\{u_1, u_2\}$ where

 $u_1 = (1, 0, -1), u_2 = (0, 1, -1)$ et $G = \{(x, y, z) \in \mathbb{R}^3 : x - y = x + z = 0\}.$

- (1) Show that the vectors u_1 and u_2 are linearly dependent.
- (2) Show that *G* is a subspace of \mathbb{R}^3 .
- (3) Show that if $(x, y, z) \in F$ then x + y + z = 0.
- (4) Determine a basis for F and a basis for G and deduce $\dim(F)$ and $\dim(G)$.
- (5) Determine $F \cap G$ and deduce that $\mathbb{R}^3 = F \oplus G$.

SUPPLEMENTARY EXERCISES

Exercise 7

(1) Show that $S = \{(1,1,1), (1,1,0), (1,0,0)\}$ is abasis of \mathbb{R}^3 .

(2) Find the components of v = (1,1,2) and w = (2,3,4) in the standard basis of \mathbb{R}^3 and in the *S* basis. (3) Determine the components of the standard basis vectors in the *S* basis.

Exercise 8

Let

$$U_1 = \{(a,b,c) \in \mathbb{R}^3 : a = c\}, U_2 = \{(a,b,c) \in \mathbb{R}^3 : a+b+c=0\} \text{ and } U_3 = \{(0,0,c) : c \in \mathbb{R}\}$$

(1) Show that : U_i , i = 1, 3 are subspaces of \mathbb{R}^3 .

(2) Show that :
$$\mathbb{R}^3 = U_1 + U_2$$
, $\mathbb{R}^3 = U_2 + U_3$, $\mathbb{R}^3 = U_1 + U_3$.

(3) Determine dim U_1 , dim U_2 and dim U_3 .

(4) In which case the sum is direct.

Exercise 9

Let $A = \{(x + y, y - 3x, x) : x, y \in \mathbb{R}\}$ and $B = \{(x, y, z) \in \mathbb{R}^3 : y = -2x = -2z\}.$

(1) Check that A and B are two subspaces of \mathbb{R}^3 .

(2) Determine $\dim A$ and $\dim B$.

(3) Show that $A \oplus B = \mathbb{R}^3$.

Exercise 10

Let $\mathbb{R}_1[X]$ be the vector space of polynomials of degree less than or equal to 1 and $B = \{1, x\}$ its standard basis.

(1) Check that $\forall x \in \mathbb{R}$: $a + bx = \frac{a-b}{2}(1-x) + \frac{a+b}{2}(1+x)$

(2) Determine the real numbers α and β such that : $\forall x \in \mathbb{R}$, $\alpha(1-x) + \beta(1+x) = 0$.

(3) Deduce that : $C = \{1 - x, 1 + x\}$ is a basis of $\mathbb{R}_1[X]$.

(4) Determine the components of the vector P(x) = 2x + 3, as well as the vectors of the standard basis *B* in the basis *C*.

Exercise 11

Let $E = \mathbb{R}_1[X]$, $E_1 = \{P \in E; P(-X) = P(X)\}$ and $E_2 = \{P \in E; P(-X) = -P(X)\}$. (1) Show that E_1 and E_2 are subspaces of E.

(2) Use two methods to show that $E = E_1 \oplus E_2$.

Exercise 12

Let $\mathcal{F}(\mathbb{R},\mathbb{R})$ be the subspace over \mathbb{R} of functions from \mathbb{R} into \mathbb{R} .

Let $\wp(\mathbb{R},\mathbb{R})$ and $\mathfrak{I}(\mathbb{R},\mathbb{R})$ be the subspaces of $\mathscr{F}(\mathbb{R},\mathbb{R})$ of even and odd functions from \mathbb{R} into \mathbb{R} defined by :

 $\wp(\mathbb{R},\mathbb{R}) = \{ f \in \mathcal{F}(\mathbb{R},\mathbb{R}) : \forall x \in \mathbb{R} : f(-x) = f(x) \}, \\ \Im(\mathbb{R},\mathbb{R}) = \{ f \in \mathcal{F}(\mathbb{R},\mathbb{R}) : \forall x \in \mathbb{R} : f(-x) = -f(x) \} \\ \text{Let } f \in \mathcal{F}(\mathbb{R},\mathbb{R}). \text{ We define two functions } p \text{ and } i \text{ of } \mathcal{F}(\mathbb{R},\mathbb{R}) \text{ by } : \\ \forall x \in \mathbb{R} : p(x) = \frac{1}{2} [f(x) + f(-x)], i(x) = \frac{1}{2} [f(x) - f(-x)]. \\ (1) \text{ Show that } p \text{ is even and } i \text{ is odd. Deduce that } \mathcal{F}(\mathbb{R},\mathbb{R}) = \wp(\mathbb{R},\mathbb{R}) + \Im(\mathbb{R},\mathbb{R}).$

(2) Show that $\mathcal{F}(\mathbb{R},\mathbb{R}) = \wp(\mathbb{R},\mathbb{R}) \oplus \mathfrak{I}(\mathbb{R},\mathbb{R})$.