Tutorial sheet $\mathbf{N}^{\circ} 1$: Vector spaces

Exercise 1

(1) Let $E=\mathbb{R}^{+*}$ be provided with a binary operation \oplus defined by :
$\forall a, b \in E: a \oplus b=a b$, and an external law \otimes such that:
$\forall a \in E, \forall \lambda \in \mathbb{R}: \lambda \otimes a=a^{\lambda}$.

- Show that (E, \oplus, \otimes) is a \mathbb{R}-vector space.
(2) Let U be the set of sequences $\left(u_{n}\right)_{n \in \mathbb{N}}$ such that $\lim _{n \rightarrow+\infty} u_{n}=0$.
- Show that $(U,+,$.$) is a \mathbb{R}$-vector space.

Exercise 2

Among the sets F say which are subspaces of E in each case :
(1) $E=\mathbb{R}^{3}, F=\left\{(x, y, z) \in \mathbb{R}^{3} ; x+2 y+3 z=0\right\}$. (2) $E=\mathbb{R}^{2}, F=\left\{(x, y) \in \mathbb{R}^{2} ; 2 x+3 y=0\right\}$
(3) $E=\mathbb{R}^{2}, F=\left\{(x, y) \in \mathbb{R}^{2} ; x^{2}+y^{2}=4\right\}$, (4) $E=\mathbb{R}[X], F=\{P \in \mathbb{R}[X] ; \operatorname{deg}(P)=4\}$
(5) $E=\mathbb{R}[X], F=\mathbb{R}_{4}[X]=\{P \in \mathbb{R}[X] ; \operatorname{deg}(P) \leq 4\}$
(6) $E=\mathbb{R}^{\mathbb{N}}$ set of real sequences, $F=\left\{\left(u_{n}\right) \in E: f\right.$ is increasing $\}$
(7) $E=\mathcal{F}(\mathbb{R}, \mathbb{R}), F=\{f \in E ; f(1)=0\}$, (8) $E=\mathcal{F}(\mathbb{R}, \mathbb{R}), F=\{f \in E ; f(0)=1\}$.

Exercise 3

Let $u=(1,2,3)$ and $v=(2,3,1)$ be two vectors of \mathbb{R}^{3}.
(1) Write the vectors $w_{1}=(1,3,8)$ and $w_{2}=(2,4,5)$ as linear combinations of u and v.
(2) Determine the real number k so that the vector $w=(1, k,-2)$ is a linear combination of u and v.
(3) Determine conditions on the real numbers a, b and c so that the vector $W=(a, b, c)$ can be written as a linear combination of the vectors u and v.

Exercise 4

Let $U=\left\{(x, y, z) \in \mathbb{R}^{3} ; x=y=z\right\}$ and $W=\left\{(x, y, z) \in \mathbb{R}^{3} ; x=0\right\}$
(1) Show that U and W are subspaces of \mathbb{R}^{3}.
(2) Show that: $\mathbb{R}^{3}=U \oplus W$

Exercise 5

(1) Show that: $F=\left\{(X-1)^{3},(X-1)^{2},(X-1), 1\right\}$ is a basis of $\mathbb{R}_{3}[X]$.
(2) Find the components of the polynomial $P(X)=3 X^{3}-4 X^{2}+2 X-5$ in this basis.

Exercise 6

Let $F=\operatorname{Vect}\left\{u_{1}, u_{2}\right\}$ be the subspace of \mathbb{R}^{3} spanned by $\left\{u_{1}, u_{2}\right\}$ where
$u_{1}=(1,0,-1), u_{2}=(0,1,-1)$ et $G=\left\{(x, y, z) \in \mathbb{R}^{3}: x-y=x+z=0\right\}$.
(1) Show that the vectors u_{1} and u_{2} are linearly dependent.
(2) Show that G is a subspace of \mathbb{R}^{3}.
(3) Show that if $(x, y, z) \in F$ then $x+y+z=0$.
(4) Determine a basis for F and a basis for G and $\operatorname{deduce} \operatorname{dim}(F)$ and $\operatorname{dim}(G)$.
(5) Determine $F \cap G$ and deduce that $\mathbb{R}^{3}=F \oplus G$.

SUPPLEMENTARY EXERCISES

Exercise 7

(1) Show that $S=\{(1,1,1),(1,1,0),(1,0,0)\}$ is abasis of \mathbb{R}^{3}.
(2) Find the components of $v=(1,1,2)$ and $w=(2,3,4)$ in the standard basis of \mathbb{R}^{3} and in the S basis.
(3) Determine the components of the standardl basis vectors in the S basis.

Exercise 8

Let
$U_{1}=\left\{(a, b, c) \in \mathbb{R}^{3}: a=c\right\}, U_{2}=\left\{(a, b, c) \in \mathbb{R}^{3}: a+b+c=0\right\}$ and $U_{3}=\{(0,0, c): c \in \mathbb{R}\}$
(1) Show that: $U_{i}, i=1,3$ are subspaces of \mathbb{R}^{3}.
(2) Show that: $\mathbb{R}^{3}=U_{1}+U_{2}, \mathbb{R}^{3}=U_{2}+U_{3}, \mathbb{R}^{3}=U_{1}+U_{3}$.
(3) Determine $\operatorname{dim} U_{1}, \operatorname{dim} U_{2}$ and $\operatorname{dim} U_{3}$.
(4) In which case the sum is direct.

Exercise 9

Let $A=\{(x+y, y-3 x, x): x, y \in \mathbb{R}\}$ and $B=\left\{(x, y, z) \in \mathbb{R}^{3}: y=-2 x=-2 z\right\}$.
(1) Check that A and B are two subspaces of \mathbb{R}^{3}.
(2) Determine $\operatorname{dim} A$ and $\operatorname{dim} B$.
(3) Show that $A \oplus B=\mathbb{R}^{3}$.

Exercise 10

Let $\mathbb{R}_{1}[X]$ be the vector space of polynomials of degree less than or equal to 1 and $B=\{1, x\}$ its standard basis.
(1) Check that $\forall x \in \mathbb{R}: a+b x=\frac{a-b}{2}(1-x)+\frac{a+b}{2}(1+x)$
(2) Determine the real numbers α and β such that: $\forall x \in \mathbb{R}, \alpha(1-x)+\beta(1+x)=0$.
(3) Deduce that: $C=\{1-x, 1+x\}$ is a basis of $\mathbb{R}_{1}[X]$.
(4) Determine the components of the vector $P(x)=2 x+3$, as well as the vectors of the standard basis B in the basis C.

Exercise 11

Let $E=\mathbb{R}_{1}[X], E_{1}=\{P \in E ; P(-X)=P(X)\}$ and $E_{2}=\{P \in E ; P(-X)=-P(X)\}$.
(1) Show that E_{1} and E_{2} are subspaces of E.
(2) Use two methods to show that $E=E_{1} \oplus E_{2}$.

Exercise 12

Let $\mathcal{F}(\mathbb{R}, \mathbb{R})$ be the subspace over \mathbb{R} of functions from \mathbb{R} into \mathbb{R}.
Let $\wp(\mathbb{R}, \mathbb{R})$ and $\mathfrak{J}(\mathbb{R}, \mathbb{R})$ be the subspaces of $\mathcal{F}(\mathbb{R}, \mathbb{R})$ of even and odd functions from \mathbb{R} into \mathbb{R} defined by :
$\wp(\mathbb{R}, \mathbb{R})=\{f \in \mathcal{F}(\mathbb{R}, \mathbb{R}): \forall x \in \mathbb{R}: f(-x)=f(x)\}$,
$\mathfrak{J}(\mathbb{R}, \mathbb{R})=\{f \in \mathcal{F}(\mathbb{R}, \mathbb{R}): \forall x \in \mathbb{R}: f(-x)=-f(x)\}$
Let $f \in \mathcal{F}(\mathbb{R}, \mathbb{R})$. We define two functions p and i of $\mathcal{F}(\mathbb{R}, \mathbb{R})$ by :
$\forall x \in \mathbb{R}: p(x)=\frac{1}{2}[f(x)+f(-x)], i(x)=\frac{1}{2}[f(x)-f(-x)]$.
(1) Show that p is even and i is odd. Deduce that $\mathcal{F}(\mathbb{R}, \mathbb{R})=\wp(\mathbb{R}, \mathbb{R})+\mathfrak{J}(\mathbb{R}, \mathbb{R})$.
(2) Show that $\mathcal{F}(\mathbb{R}, \mathbb{R})=\wp(\mathbb{R}, \mathbb{R}) \oplus \mathfrak{J}(\mathbb{R}, \mathbb{R})$.

