T.D N ${ }^{\circ} 02$: Polynomials and rational fractions

Exercise 1

(1) Calculate, develop and order according to decreasing powers, the following polynomial :

$$
P(x)=\left(x^{3}-x^{2}+2 x-1\right)\left(2 x^{2}-3 x+3\right)+\left(1-2 x+2 x^{3}\right)\left(2+x-x^{2}\right) .
$$

(2) Perform the euclidean division in $\mathbb{R}[X]$ of $P(x)$ by $2 x^{2}-3 x+3$.
(3) Carry out the division according to increasing powers to order 3 in $\mathbb{R}[X]$ of $P(x)$ by $1-2 x+2 x^{3}$.

Exercise 2

(I) Let $P=a_{n} x^{n}+a_{n-1} x^{n-1}+a_{n-2} x^{n-2} \ldots+a_{2} x^{2}+a_{1} x+a_{0}$, be a polynomial of degree $n \geq 1$ with coefficients in \mathbb{Z}.
(1) Prove that if P admits a root in \mathbb{Z}, then this divides a_{0}.
(2) Do the polynomials $x^{3}-x^{2}-109 x-11$ and $x^{10}+x^{5}+1$ have roots in \mathbb{Z} ?
(II) Let $P(x)=x^{5}-3 x^{4}+4 x^{3}-4 x^{2}+3 x-1$
(1) Show that P admits an integer root and determine its order of multiplicity.
(2) Factor the polynomial P into $\mathbb{R}[X]$, as a product of irreducible polynomials.

Exercise 3

(1) Calculate, develop and order according to increasing powers, the following polynomial:

$$
P(x)=(1+x)\left(x^{3}+1\right)+(2+x)(x-1) .
$$

(2) Factor in $\mathbb{R}[X]$ into the product of irreducible polynomials, the following polynomial:

$$
Q(x)=x^{3}+x^{2}+x+1 .
$$

(3) Do the Euclidean division of $P(x)$ by $Q(x)$.
(4) Carry out the division according to the increasing powers to order 2 of $P(x)$ by $Q(x)$.
(5) Decompose the following rational fraction into simple elements:

$$
F(x)=\frac{P(x)}{Q(x)}
$$

Exercise 4

Decompose the following rational fractions into simple elements:

$$
\begin{aligned}
& F_{1}(x)=\frac{1}{x^{3}+3 x^{2}+2 x}, F_{2}(x)=\frac{3 x^{4}}{x^{3}-1}, \\
& F_{3}(x)=\frac{x^{3}+1}{(x-1)^{3}}
\end{aligned}
$$

SUPPLEMENTARY EXERCISES

Exercise 1

(1)Determine the polynomial P of degree 2 verifying:

$$
\begin{equation*}
P(0)=0, \forall x \in \mathbb{R}: P(x)-P(x-1)=x . \tag{*}
\end{equation*}
$$

\qquad
(2) Using the relation (*), calculate the sum

$$
S=1+2+3+\ldots+n
$$

Exercise 2

Let $A(x)=x^{4}-3 x^{3}-x^{2}+8 x-4$.
(1) Show that $x_{0}=2$ is a double root of the polynomial A, and deduce the other roots.
(2) Factor $A(x)$ into $\mathbb{R}[X]$.

Exercise 3

Factor in $\mathbb{R}[X]$, the following polynomials:

$$
\begin{aligned}
& P_{1}(x)=x^{4}-1, P_{2}(x)=x^{6}+1, Q_{1}(x)=x^{6}+2 x^{4}-2 x^{2}+1 \\
& Q_{2}(x)=x^{10}+x^{5}+1, R_{1}(x)=x^{12}-1, R_{2}(x)=x^{9}+x^{6}+x^{3}+1
\end{aligned}
$$

Exercise 4

Let $A(x)=x^{3}-2 x^{2}+x-2$
(1) Show that A admits a simple integer root α.
(2) Factor $A(x)$ into $\mathbb{R}[X]$.

Exercise 5

What is the remainder of the Euclidean division of the polynomial

$$
\begin{aligned}
P(x) & =(x+1)^{n}-x^{n}-1 \text { by } \\
\text { (i) } Q_{1}(x) & =x^{2}-3 x+2 \\
\text { (ii) } Q_{2}(x) & =x^{2}-2 x+1
\end{aligned}
$$

Exercise 6

Consider the following polynomial:

$$
Q(x)=x^{3}-x^{2}-x+1 .
$$

(1) Verify that $x_{0}=1$ is a double root of the polynomial Q.
(2) Factor in $\mathbb{R}[X]$ into the product of irreducible polynomials, the polynomial Q.
(3) Determine the polynomial P whose quotient and the remainder of its Euclidean division by Q are :

$$
A(x)=x \text { and } R(x)=4 \text { respectively } .
$$

(4) Carry out the division according to the increasing powers to order 2 of P by Q.
(5) Decompose the following rational fraction into simple elements in $\mathbb{R}[X]$:

$$
F(x)=\frac{P(x)}{Q(x)}
$$

Exercise 7

Decompose the following rational fractions into simple elements:

$$
\begin{aligned}
& F_{1}(x)=\frac{1}{x^{2}-3 x+2}, F_{2}(x)=\frac{1}{x^{3}-3 x^{2}+2} \\
& F_{3}(x)=\frac{x^{5}-4 x^{4}+5 x^{3}+x^{2}-4 x+5}{x^{3}-6 x^{2}-11 x-6}, F_{4}(x)=\frac{x^{3}}{x^{4}-1}
\end{aligned}
$$

