

Remedial exam

Exercise 1 (7 pts)

Let $E=\operatorname{Span}\{(1,1,1)\}$ and $F=\left\{(x, y, z) \in \mathbb{R}^{3}: x+y-z=0\right\}$
(1) Show that F is a subspace of \mathbb{R}^{3} and find its dimension.
(2) Find $E \cap F$
(3) Show that $\mathbb{R}^{3}=E \oplus F$.

Exercise 2 (5 pts)

We consider the map F defined by :

$$
\begin{aligned}
F: \mathbb{R}_{2}[X] & \rightarrow \mathbb{R}_{2}[X] \\
P & \mapsto(X+1) P^{\prime}
\end{aligned}
$$

(1) Show that F is a linear map.
(2) Determine $\operatorname{ker}(F)$, the kernel of F and deduce $r(F)$, the rank of F.
(3) Is the map F injective? Surjective?

Exercise 3 (8 pts)

Let $M=\left(\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 1\end{array}\right)$ and $C=\left(\begin{array}{ccc}5 & -2 & 1 \\ -2 & 4 & -2 \\ 1 & -2 & 5\end{array}\right)$
(1) Determine the matrices $A={ }^{t} M . M$ and $B=A+I_{3}$, where ${ }^{t} M$ is the transpose matrix of M and I_{3} is the unit (identity) matrix of order 3 .
(2) Calculate $\operatorname{det}(B)$.
(3) Calculate B.C and C.B.
(4) Solve the following system (S) by two methods: (matrix inversion method and Cramer method)

$$
(S)\left\{\begin{array}{c}
2 x+y=3 \\
x+3 y+z=5 \\
y+2 z=3
\end{array}\right.
$$

(5) Determine the values of $\lambda \in \mathbb{R}$ so that: $\operatorname{det}\left(B-\lambda I_{3}\right)=0$.

