Academic year: 2023 - 2024 Module : Algebra 2

L1 Math+M1

Remedial exam

Exercise 1 (7 pts)

Let $E = Span\{(1,1,1)\}$ and $F = \{(x,y,z) \in \mathbb{R}^3 : x+y-z=0\}$

- (1) Show that F is a subspace of \mathbb{R}^3 and find its dimension.
- (2) Find $E \cap F$
- (3) Show that $\mathbb{R}^3 = E \oplus F$.

Exercise 2 (5 pts)

We consider the map F defined by :

$$F: \mathbb{R}_2[X] \to \mathbb{R}_2[X]$$
$$P \mapsto (X+1)P'$$

- (1) Show that F is a linear map.
- (2) Determine ker(F), the kernel of F and deduce r(F), the rank of F.
- (3) Is the map *F* injective? Surjective?

Exercise 3 (8 pts)

Let
$$M = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$$
 and $C = \begin{pmatrix} 5 & -2 & 1 \\ -2 & 4 & -2 \\ 1 & -2 & 5 \end{pmatrix}$

- (1) Determine the matrices $A = {}^tM.M$ and $B = A + I_3$, where tM is the transpose matrix of M and I_3 is the unit (identity) matrix of order 3.
- (2) Calculate det(B).
- (3) Calculate B. C and C.B.
- (4) Solve the following system (S) by two methods: (matrix inversion method and Cramer method)

$$(S) \begin{cases} 2x + y = 3 \\ x + 3y + z = 5 \\ y + 2z = 3 \end{cases}$$

(5) Determine the values of $\lambda \in \mathbb{R}$ so that : $\det(B - \lambda I_3) = 0$.