Test 1 : Elementary functions, G2

1. Calculate : $\arccos \left(\cos \frac{-6 \pi}{4}\right)$. (1point).
2. Show that $\forall x \in[-1,1], \arccos x+\arcsin x=\frac{\pi}{2}$. (5points).

First and last name :

Test 1 : Elementary functions, G3 and G6

1. Calculate: $\arcsin \left(\sin \frac{7 \pi}{3}\right)$. (1point).
2. Show that, for $x \in \mathbb{R}^{*}, \arctan x+\arctan \left(\frac{1}{x}\right)=\left\{\begin{array}{cc}\frac{\pi}{2} \\ -\frac{\pi}{2}\end{array} . \quad\right.$ (5points).

Test 1 : Elementary functions, G1

1. Calculate: $\arcsin \left(\sin \frac{\pi}{6}\right)$. (1point).
2. Show that $\quad \forall \alpha \geq 1, \arg \operatorname{ch}(\alpha)=\ln \left(\alpha+\sqrt{\alpha^{2}-1}\right)$. (5points).

Test 1 : Elementary functions, G4 and G5

1. Calculate: $\arccos \left(\cos \frac{2 \pi}{3}\right)$. (1point).
2. Show that $\quad \forall \alpha \in \mathbb{R}, \arg \operatorname{sh}(\alpha)=\ln \left(\alpha+\sqrt{\alpha^{2}+1}\right)$. (5points).

Test 1 correction: Elementary functions, G2

1. Calculate : $\arccos \left(\cos \frac{-6 \pi}{4}\right)$.
$\frac{-6 \pi}{4}=\frac{-3 \pi}{2}$ so $\cos \frac{-6 \pi}{4}=\cos \frac{-3 \pi}{2}=\cos \frac{\pi}{2}$, which gives :

$$
\arccos \left(\cos \frac{-6 \pi}{4}\right)=\arccos \left(\cos \frac{\pi}{2}\right)=\frac{\pi}{2} . \quad(1 \text { point }) .
$$

2. Show that $\forall x \in[-1,1], \arccos x+\arcsin x=\frac{\pi}{2}$.

- $1^{\text {st }}$ way: Put: $\forall x \in[-1,1], f(x)=\arccos x+\arcsin x$. (1point).
f is countinuous over $[-1,1]$ and derivable over $]-1,1[$ as follows :

$$
f^{\prime}(x)=\frac{-1}{\sqrt{1-x^{2}}}+\frac{1}{\sqrt{1-x^{2}}}=0 \quad(1 \text { point })
$$

So f is constant on $]-1,1[$. i.e.: $\forall x \in]-1,1[, f(x)=f(0)$. (1 point).

$$
\begin{aligned}
f(0) & =\arccos (0)+\arcsin (0) \\
& =\frac{\pi}{2}+0=\frac{\pi}{2} \cdot \quad(0.5 \text { point }) .
\end{aligned}
$$

For $x=1$:

$$
\begin{aligned}
f(1) & =\arccos (1)+\arcsin (1) \\
& =0+\frac{\pi}{2}=\frac{\pi}{2} . \quad(0.5 \text { point }) .
\end{aligned}
$$

For $x=-1$:

$$
\begin{aligned}
f(-1) & =\arccos (-1)+\arcsin (-1) \\
& =\pi-\frac{\pi}{2}=\frac{\pi}{2} . \quad(0.5 \text { point })
\end{aligned}
$$

Finally:

$$
\forall x \in[-1,1], \quad f(x)=\frac{\pi}{2} \quad \text { (0.5point). }
$$

- $2^{\text {nd }}$ way One has :

$$
\begin{aligned}
x & \in[-1,1] \Rightarrow \arccos x \in[0, \pi] \quad(1 \text { point }) . \\
& \Rightarrow \frac{\pi}{2}-\arccos x \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \quad(1 \text { point })
\end{aligned}
$$

Now, we may apply sin:

$$
\sin \left(\frac{\pi}{2}-\arccos x\right)=\cos (\arccos x) \quad(1 \text { point })
$$

Because we have the trigonometric relationship:

$$
\forall \alpha \in \mathbb{R}, \sin \left(\frac{\pi}{2}-\alpha\right)=\cos \alpha
$$

So :

$$
\begin{aligned}
& \sin \left(\frac{\pi}{2}-\arccos x\right)=x \quad(1 \text { point }) \\
& \Rightarrow \frac{\pi}{2}-\arccos x=\arcsin x \\
& \Rightarrow x \in[-1,1], \frac{\pi}{2}=\arccos x+\arcsin x
\end{aligned} \text { (1point). }
$$

Faculty of Sciences, Mathematics departement

Test 1 correction: Elementary functions, G3 and G6

1. Calculate: $\arcsin \left(\sin \frac{7 \pi}{3}\right)$.
$\frac{7 \pi}{3} \notin\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, we need to simplify it :

$$
\frac{7 \pi}{3}=\frac{6 \pi+\pi}{3}=2 \pi+\frac{\pi}{3}
$$

So,

$$
\sin \frac{7 \pi}{3}=\sin \frac{\pi}{3}
$$

Which means that :

$$
\arcsin \left(\sin \frac{7 \pi}{3}\right)=\arcsin \left(\sin \frac{\pi}{3}\right)=\frac{\pi}{3} . \quad(1 \text { point })
$$

2. Show that, for $x \in \mathbb{R}^{*}, \arctan x+\arctan \left(\frac{1}{x}\right)=\left\{\begin{array}{c}\frac{\pi}{2} \\ -\frac{\pi}{2}\end{array}\right.$.

- $\mathbf{1}^{\text {st }}$ way : Put : $\forall x \in \mathbb{R}^{*}, f(x)=\arctan x+\arctan \left(\frac{1}{x}\right) \quad$ (1point).
f is continuous and derivable over \mathbb{R}^{*} as follows :

$$
\begin{aligned}
f^{\prime}(x) & =\frac{1}{1+x^{2}}+\frac{-\frac{1}{x}}{1+\left(\frac{1}{x}\right)^{2}} \\
& =\frac{1}{1+x^{2}}-\frac{1}{1+x^{2}}=0 \quad(1 \text { point })
\end{aligned}
$$

As there is a discontinuity at point $0, f$ est constant (0.5 point) over $]-\infty, 0[\cup] 0,+\infty[$ in the following way :

$$
f(x)=\left\{\begin{array}{ll}
k_{1} & \text { if } x>0 \\
k_{2} & \text { if } x<0
\end{array} \quad \text { (1point }\right) .
$$

For $x=1$:

$$
\begin{aligned}
k_{1} & =f(1) \\
& =\arctan 1+\arctan 1 \\
& =\frac{\pi}{4}+\frac{\pi}{4} \\
& \left.\Rightarrow k_{1}=\frac{\pi}{2} . \quad \text { (0.5point }\right)
\end{aligned}
$$

For $x=-1$:

$$
\begin{aligned}
k_{2} & =f(-1) \\
& =\arctan (-1)+\arctan (-1) \\
& =-\frac{\pi}{4}-\frac{\pi}{4} \\
& \left.\Rightarrow k_{2}=-\frac{\pi}{2} . \quad \text { (0.5point }\right) .
\end{aligned}
$$

Finally :

$$
\arctan x+\arctan \left(\frac{1}{x}\right)=\left\{\begin{array}{cc}
\frac{\pi}{2} & \text { if } x>0 \\
-\frac{\pi}{2} & \text { if } x<0
\end{array}\right.
$$

- $2^{\text {nd }}$ way : Put : $\forall x \in \mathbb{R}^{*}, \arctan x=y$, so,

$$
\left\{\begin{array}{l}
x=\tan y \\
y \in]-\frac{\pi}{2}, \frac{\pi}{2}[\quad(1 \text { point })
\end{array}\right.
$$

Yields:

First case if $x>0, y \in] 0, \frac{\pi}{2}\left[\right.$ then $\left.\left(\frac{\pi}{2}-y\right) \in\right] 0, \frac{\pi}{2}[$.
Let us recall the known trigonometric relationship:

$$
\begin{aligned}
& \forall \alpha \neq k \pi /(k \in \mathbb{Z}), \quad \tan \left(\frac{\pi}{2}-\alpha\right)=\frac{1}{\tan \alpha} \\
& \Rightarrow \tan \left(\frac{\pi}{2}-y\right)=\frac{1}{\tan y}(\text { because } y \in] 0, \frac{\pi}{2}[) \\
& \Rightarrow \quad \arctan \left(\tan \left(\frac{\pi}{2}-y\right)\right)=\arctan \left(\frac{1}{\tan y}\right) \\
& \Rightarrow \quad\left(\frac{\pi}{2}-y\right)=\arctan \left(\frac{1}{\tan y}\right) \\
& \Rightarrow \forall x>0, \frac{\pi}{2}-\arctan x=\arctan \left(\frac{1}{\tan (\arctan (x))}\right) \\
& \Rightarrow \forall x>0, \frac{\pi}{2}=\arctan \left(\frac{1}{x}\right)+\arctan x . \quad(1, \text { spoints }) .
\end{aligned}
$$

Second case if $x<0$, then $(-x)>0$ and since arctan is odd ($0.5 p o i n t$). we will have (from the first case):

$$
\begin{aligned}
\forall x & <0, \frac{\pi}{2}=\arctan \left(\frac{1}{(-x)}\right)+\arctan (-x) \\
& \Rightarrow \frac{\pi}{2}=-\arctan \left(\frac{1}{x}\right)-\arctan x \quad(1 \text { point })
\end{aligned}
$$

Yields:

$$
\forall x<0,-\frac{\pi}{2}=\arctan \left(\frac{1}{x}\right)+\arctan x
$$

Finally,

$$
\arctan x+\arctan \left(\frac{1}{x}\right)=\left\{\begin{array}{cc}
\frac{\pi}{2} & \text { si } x>0 \\
-\frac{\pi}{2} & \text { si } x<0
\end{array}\right.
$$

Test 1 Correction: Elementary functions, G1

1. Calculate: $\arcsin \left(\sin \frac{\pi}{6}\right)$.

Since $\frac{\pi}{6} \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \quad$ then $\quad \arcsin \left(\sin \frac{\pi}{6}\right)=\frac{\pi}{6} . \quad$ (1point).
2. Show that $\quad \forall \alpha \geq 1, \arg \operatorname{ch}(\alpha)=\ln \left(\alpha+\sqrt{\alpha^{2}-1}\right)$.

- $1^{\text {st }}$ method: Put $\arg \operatorname{ch}(\alpha)=y$ with $y \geq 0$.

1. If $\arg \operatorname{ch}(\alpha)=y$, then $\alpha=\operatorname{chy} \Rightarrow \alpha=\frac{e^{y}+e^{-y}}{2} \Rightarrow e^{y}+e^{-y}-2 \alpha=0 \ldots(*)$. (1point).

Put $e^{y}=z \geq 1$ (because $y \geq 0$), we then find: $e^{-y}=\frac{1}{z}(>0)$. So,

$$
\begin{aligned}
(*) & \Leftrightarrow z+\frac{1}{z}-2 \alpha=0 \\
& \Leftrightarrow z^{2}-2 \alpha z+1=0 \\
& \Leftrightarrow z_{1,2}=\alpha \pm \sqrt{\alpha^{2}-1} \quad \text { (1point). }
\end{aligned}
$$

- $\quad-$ We have to show that, $z_{1}=\alpha-\sqrt{\alpha^{2}-1}<1$, Suppose that :

$$
\begin{aligned}
\alpha-1-\sqrt{\alpha^{2}-1} & <0 \\
& \Rightarrow \alpha-1<\sqrt{\alpha^{2}-1}
\end{aligned}
$$

Since $\alpha \geq 1$ then $\alpha-1 \geq 0$, so we can apply the square. We find:

$$
\begin{aligned}
(\alpha-1)^{2} & <\alpha^{2}-1 \\
-2(\alpha-1) & <0 \text { which is true } \forall \alpha \geq 1 . \quad \text { (1point). }
\end{aligned}
$$

z_{1} is hence refused.

- $\quad-$ We then show that, $z_{2}=\alpha+\sqrt{\alpha^{2}-1} \geq 1$,

Suppose the opposite, i.e. that:

$$
\begin{aligned}
\alpha-1+\sqrt{\alpha^{2}-1} & <0 \\
& \Rightarrow \alpha-1<-\sqrt{\alpha^{2}-1}
\end{aligned}
$$

Which is impossible, given that $\alpha-1 \geq 0$. Hence, $\forall \alpha \geq 1, \alpha+\sqrt{\alpha^{2}-1} \geq 1 \quad$ (1point).
z_{2} is therefore accepted.
Consequently, the only solution is : $z_{2}=\alpha+\sqrt{\alpha^{2}-1} \geq 1$.
This gives : $e^{y}=\alpha+\sqrt{\alpha^{2}-1} \Rightarrow y=\ln \left(\alpha+\sqrt{\alpha^{2}-1}\right)$. Hence, $\forall \alpha \geq 1$, $\arg \operatorname{ch}(\alpha)=\ln \left(\alpha+\sqrt{\alpha^{2}-1}\right)$. (1point).

- $2^{\text {nd }}$ method: Put $\alpha=$ chy with $y \geq 0, \alpha \geq 1 \quad$ (1point).

We know that chy + shy $=e^{y}$, so, $y=\ln ($ chy + shy). (1point).
But since, $\operatorname{ch}^{2} y-s^{2} y=1$, we get $: s h y= \pm \sqrt{c h^{2} y-1} . \quad$ (1point).
sh being increasing, $y \geq 0 \Rightarrow$ shy ≥ 0, which means that $s h y=\sqrt{c h^{2} y-1} . \quad$ (1point).
We then obtain $y=\ln \left(\operatorname{chy}+\sqrt{c^{2} y-1}\right)$.
And since $y=\arg \operatorname{ch}(\alpha)$, we get $\forall \alpha \geq 1$, $\arg \operatorname{ch}(\alpha)=\ln \left(\alpha+\sqrt{\alpha^{2}-1}\right)$. (1point).

Test 1 Correction: Elementary functions, G4 et G5

1. Calculate: $\arccos \left(\cos \frac{2 \pi}{3}\right)$.

Since $\frac{2 \pi}{3} \in[0, \pi]$ then $\arccos \left(\cos \frac{2 \pi}{3}\right)=\frac{2 \pi}{3} . \quad(1$ point $)$.
2. Show that $\quad \forall \alpha \in \mathbb{R}, \arg \operatorname{sh}(\alpha)=\ln \left(\alpha+\sqrt{\alpha^{2}+1}\right)$.

- $1^{\text {st }}$ method:

We put $\arg \operatorname{sh}(\alpha)=y$. So

$$
\begin{aligned}
\alpha & =\operatorname{sh} y \Rightarrow \alpha=\frac{e^{y}-e^{-y}}{2} \\
& \Rightarrow e^{y}-e^{-y}-2 \alpha=0 \ldots(*) . \quad(1 \text { point })
\end{aligned}
$$

Put $e^{y}=z(>0)$, to get : $e^{-y}=\frac{1}{z}(>0)$. So,

$$
\begin{aligned}
(*) & \Leftrightarrow z-\frac{1}{z}-2 \alpha=0 \\
& \Leftrightarrow z^{2}-2 \alpha z-1=0 \\
& \Leftrightarrow z_{1,2}=\alpha \pm \sqrt{\alpha^{2}+1} \quad \text { (1point). }
\end{aligned}
$$

We want to show that, $\forall \alpha \in \mathbb{R},\left\{\begin{array}{l}z_{1}=\alpha-\sqrt{\alpha^{2}+1}<0 \ldots(1) \\ z_{2}=\alpha+\sqrt{\alpha^{2}+1}>0 \ldots(2)\end{array}\right.$,
We know that :

$$
\begin{aligned}
\forall \alpha & \in \mathbb{R}, \alpha^{2}<\left(\alpha^{2}+1\right) \\
& \Rightarrow|\alpha|<\sqrt{\alpha^{2}+1} \\
& \Rightarrow-\sqrt{\alpha^{2}+1}<\alpha<\sqrt{\alpha^{2}+1} \ldots(*)
\end{aligned}
$$

-) $(*) \Rightarrow \forall \alpha \in \mathbb{R}, \alpha-\sqrt{\alpha^{2}+1}<0 . \quad z_{1}$ is then refused. (1point).
-) $(*) \Rightarrow \forall \alpha \in \mathbb{R}, \alpha+\sqrt{\alpha^{2}+1}>0$. z_{2} is then accepted. (1point).
The solution then is : $z_{2}=\alpha+\sqrt{\alpha^{2}+1}>0$.
Which gives that : $e^{y}=\alpha+\sqrt{\alpha^{2}+1} \Rightarrow y=\ln \left(\alpha+\sqrt{\alpha^{2}+1}\right)$. (1point).
Hence, $\forall \alpha \in \mathbb{R}, \arg \operatorname{sh}(\alpha)=\ln \left(\alpha+\sqrt{\alpha^{2}+1}\right)$.

- $2^{\text {nd }}$ way

Put $\forall \alpha \in \mathbb{R}, \arg \operatorname{sh}(\alpha)=y \Longrightarrow \alpha=$ shy, $y \in \mathbb{R}$. (1point).
We know that $\forall y \in \mathbb{R}, \operatorname{ch} y+s h y=e^{y} .($ Notice that this means that chy + shy $>0)$.
So, $y=\ln ($ chy + shy $)$. (1point).
But since chy $=\sqrt{s^{2} y+1}, \quad(1$ point $)$. we get $: y=\ln \left(s h y+\sqrt{s^{2} y+1}\right) . \quad$ (1point).
i.e. $\forall \alpha \in \mathbb{R}, \arg \operatorname{sh}(\alpha)=\ln \left(\alpha+\sqrt{\alpha^{2}+1}\right)$. (1point).

Test 2 : Derivability and LE, G2

1. Consider the function :
(0.25 pt/right answer).

$$
\begin{aligned}
f: & {[0,1[\rightarrow[1,+\infty[} \\
& x \mapsto f(x)=\frac{1}{\sqrt{1-x^{2}}}
\end{aligned}
$$

$\square f$ is odd. $\square f$ is even.f is continuous over \mathbb{R}.
$\square f$ is continuous over $[0,1[$.
$\square f$ is continuous over $] 0,1[$. $\square f$ is continuous at 1 .f is continuous at the right of 1 .f is continuous at the right of 0 . $\square f$ is derivable over $[0,1]$.f is derivable over $[0,1[$.f is derivable at 1. $\square f$ is derivable at the right of 1.f is derivable at the right of $\mathbf{0}$.f admits a continuous expansion at 1 .
2. Find the $\mathrm{LE}_{3}(0)$ of the function $f(x)=\ln \left(\frac{\sin x}{x}\right)$, then deduce $A=\lim _{x \rightarrow 0} \ln \left(\frac{\sin x}{x}\right) . \quad(6-(\mathbf{0 . 2 5 p t} /$ right answer in question 1))!

Test 2 : Derivability and LE, G3 and G6

1. Consider the function :
(0.25 pt/right answer).

$$
\begin{aligned}
f: & {[0,1[\rightarrow[e,+\infty[} \\
& x \mapsto f(x)=\frac{e}{\sqrt{1-x^{2}}}
\end{aligned}
$$

$\square f$ is odd. $\square f$ is even.f is continuous over \mathbb{R}.
$\square f$ is continuous over $[0,1[$. $\square f$ is continuous over $] 0,1[$. $\square f$ is continuous at 1 .
$\square f$ is continuous at the right of 1 . $\square f$ is continuous at the right of 0 . $\square f$ is derivable over $[0,1]$. f is derivable over $[0,1[$.f is derivable at 1.f is derivable at the right of 1 .f is derivable at the right of $\mathbf{0}$.f admits a continuous expansion at 1 .
2. Find the $\mathrm{LE}_{3}(0)$ of the function $f(x)=\ln \left(\frac{s h x}{x}\right)$, then deduce $A=\lim _{x \rightarrow 0} \ln \left(\frac{s h x}{x}\right) . \quad(6-(\mathbf{0 . 2 5 p t} /$ right answer in question 1))!

Test 2 : Derivability and LE, G1

1. Consider the function:
(1 pt/right answer).

$$
\begin{aligned}
f: & {[0,1[\rightarrow[\pi,+\infty[} \\
& x \mapsto f(x)=\frac{\pi}{\sqrt{1-x^{2}}}
\end{aligned}
$$

$\square f$ is odd. $\square f$ is even.f is continuous over \mathbb{R}.
$\square f$ is continuous over $[0,1[$. $\square f$ is continuous over $] 0,1[$. $\square f$ is continuous at 1 .
$\square f$ is continuous at the right of 1 . $\square f$ is continuous at the right of 0 . $\square f$ is derivable over $[0,1]$. f is derivable over $[0,1[$.f is derivable at 1.f is derivable at the right of 1 .f is derivable at the right of $\mathbf{0}$.f admits a continuous expansion at 1 .
2. Find the $\mathrm{LE}_{3}(0)$ of the function $f(x)=\ln \left(\frac{t h x}{x}\right)$, then deduce $A=\lim _{x \rightarrow 0} \ln \left(\frac{t h x}{x}\right) . \quad(6-(\mathbf{0 . 2 5 p t} /$ right answer in question 1))!

Test 2 : Derivability and LE, G4 and G5

1. Consider the function :
(1 pt/right answer).

$$
\begin{aligned}
f: & {[0,1[\rightarrow[\sqrt{2},+\infty[} \\
& x \mapsto f(x)=\frac{\sqrt{2}}{\sqrt{1-x^{2}}}
\end{aligned}
$$$f$ is odd.

$\square f$ is even.f is continuous over \mathbb{R}.
$\square f$ is continuous over $[0,1[$.
$\square f$ is continuous over $] 0,1[$. $\square f$ is continuous at 1 .
$\square f$ is continuous at the right of 1 .
f is continuous at the right of 0 .
$\square f$ is derivable over $[0,1]$.f is derivable over $[0,1[$.f is derivable at 1.f is derivable at the right of 1 .f is derivable at the right of $\mathbf{0}$.f admits a continuous expansion at 1.
2. Find the $\mathrm{LE}_{3}(0)$ of the function $f(x)=\ln \left(\frac{\tan x}{x}\right)$, then deduce $A=\lim _{x \rightarrow 0} \ln \left(\frac{\tan x}{x}\right) . \quad(6-(0.25 p \mathbf{t} /$ right answer in question 1))!

Test 2 correction : Derivability and LE, G2

1. Consider the function :(0.25 point/right answer $=\mathbf{1 . 2 5}$ points $)$.

$$
\begin{aligned}
f: & {[0,1[\rightarrow[1,+\infty[} \\
& x \mapsto f(x)=\frac{1}{\sqrt{1-x^{2}}}
\end{aligned}
$$

$\square f$ is odd.
f is even.f is continuous over \mathbb{R}.
$\square f$ is continuous over $[0,1[$.

- f is continuous over $] 0,1[$.f is continuous at 1 .
$\square f$ is continuous at the right of 1 $\square f$ is derivable at 1 . $\quad f$ is derivable over $[0,1[. \quad \square f$ is derivable over $[0,1]$. right of 0 . $\square f$ is derivable at the right of $1 . \quad \square f$ is derivable at the right of $0 . \square f$ admits a continuous expansion at 1 .

2. Find the $\mathrm{LE}_{3}(0)$ of the function $f(x)=\ln \left(\frac{\sin x}{x}\right)$, then deduce $A=\lim _{x \rightarrow 0} \ln \left(\frac{\sin x}{x}\right)$. (4.75 points).

- Since we will devide by x, we shall consider the $\operatorname{LE}(0)$ of $\sin x$ at the order 4 :

$$
\sin x=x-\frac{x^{3}}{6}+o\left(x^{4}\right) \quad(1 \text { point })
$$

So,

$$
\frac{\sin x}{x}=1-\frac{x^{2}}{6}+o\left(x^{3}\right) . \quad(0.25 \text { point })
$$

From the other hand, one has the $\mathrm{LE}_{3}(0)$ of the function $\ln (1+t)$ given by :

$$
\ln (1+t)=t-\frac{t^{2}}{2}+\frac{t^{3}}{3}+o\left(t^{3}\right) . \quad(1 \text { point })
$$

Put $t=\frac{-x^{2}}{6}$, so $\lim _{x \rightarrow 0} t=0$. (0.25 point +0.25 point). Then:

$$
\begin{aligned}
\ln \left(\frac{\sin x}{x}\right) & =\left(-\frac{x^{2}}{6}\right)-\frac{\left(-\frac{x^{2}}{6}\right)^{2}}{2}+\frac{\left(-\frac{x^{2}}{6}\right)^{3}}{3}+o\left(\left(-\frac{x^{2}}{6}\right)^{3}\right) \\
& \Rightarrow \ln \left(\frac{\sin x}{x}\right)=-\frac{x^{2}}{6}+o\left(x^{3}\right) \quad \text { (1 point). }
\end{aligned}
$$

- This means that $A=\lim _{x \rightarrow 0} \ln \left(\frac{\sin x}{x}\right)=\lim _{x \rightarrow 0}\left[-\frac{x^{2}}{6}+o\left(x^{3}\right)\right]=0 . \quad$ (1 point).

Test 2 correction: Derivability and LE, G3 and G6

1. Consider the function :(0.25 point/right answer $=\mathbf{1 . 2 5}$ points $)$.

$$
\begin{aligned}
f: & {[0,1[\rightarrow[e,+\infty[} \\
& x \mapsto f(x)=\frac{e}{\sqrt{1-x^{2}}}
\end{aligned}
$$

$\square f$ is odd.

f is continuous over \mathbb{R}.$\square f$ is continuous over $[0,1[$. $\square f$ is continuous over $] 0,1[$. $\square f$ is continuous at 1.
$\square f$ is continuous at the right of $1 . \quad \square f$ is continuous at the right of 0 .f is derivable at 1 . $\square f$ is derivable over $[0,1[. \quad \square f$ is derivable over $[0,1]$.f is derivable at the right of $1 . \quad \square f$ is derivable at the right of $0 . \square f$ admits a continuous expansion at 1 .
2. Find the $\mathrm{LE}_{3}(0)$ of the function $f(x)=\ln \left(\frac{\operatorname{sh} x}{x}\right)$, then deduce $A=\lim _{x \rightarrow 0} \ln \left(\frac{\operatorname{sh} x}{x}\right)$. (4.75 points).

- Since we will devide by x, we shall consider the $\operatorname{LE}(0)$ of $s h x$ at the order 4 :

$$
\operatorname{sh} x=x+\frac{x^{3}}{6}+o\left(x^{4}\right) \quad(1 \text { point })
$$

So,

$$
\frac{s h x}{x}=1+\frac{x^{2}}{6}+o\left(x^{3}\right) . \quad(0.25 \text { point })
$$

From the other hand, one has the $\mathrm{LE}_{3}(0)$ of the function $\ln (1+t)$ given by :

$$
\ln (1+t)=t-\frac{t^{2}}{2}+\frac{t^{3}}{3}+o\left(t^{3}\right) . \quad(1 \text { point })
$$

Put $t=\frac{x^{2}}{6}$, so $\lim _{x \rightarrow 0} t=0$. (0.25 point +0.25 point). Then:

$$
\begin{aligned}
\ln \left(\frac{s h x}{x}\right) & =\left(\frac{x^{2}}{6}\right)-\frac{\left(\frac{x^{2}}{6}\right)^{2}}{2}+\frac{\left(\frac{x^{2}}{6}\right)^{3}}{3}+o\left(\left(\frac{x^{2}}{6}\right)^{3}\right) \\
& \Rightarrow \ln \left(\frac{s h x}{x}\right)=\frac{x^{2}}{6}+o\left(x^{3}\right) \quad \text { (1 point). }
\end{aligned}
$$

- This means that $A=\lim _{x \rightarrow 0} \ln \left(\frac{s h x}{x}\right)=\lim _{x \rightarrow 0}\left[\frac{x^{2}}{6}+o\left(x^{3}\right)\right]=0 . \quad$ (1 point).

Test 2 Correction: Derivability and LE, G1

1. Consider the function :(0.25 point/right answer $=\mathbf{1 . 2 5}$ points $)$.

$$
\begin{aligned}
f: & {[0,1[\rightarrow[\pi,+\infty[} \\
& x \mapsto f(x)=\frac{\pi}{\sqrt{1-x^{2}}}
\end{aligned}
$$

$\square f$ is odd.

f is continuous over \mathbb{R}.$\square f$ is continuous over $[0,1[$. $\square f$ is continuous over $] 0,1[$. $\square f$ is continuous at 1 .
$\square f$ is continuous at the right of $1 . \quad \square f$ is continuous at the right of 0 .f is derivable at $1 . \quad \square f$ is derivable over $[0,1[. \quad \square f$ is derivable over $[0,1]$.f is derivable at the right of $1 . \quad \square f$ is derivable at the right of $0 . \square f$ admits a continuous expansion at 1 .
2. Find the $\mathrm{LE}_{3}(0)$ of the function $f(x)=\ln \left(\frac{t h x}{x}\right)$, then deduce $A=\lim _{x \rightarrow 0} \ln \left(\frac{t h x}{x}\right)$. (4.75 points).

- Since we will devide by x, we shall consider the $\operatorname{LE}(0)$ of $t h x$ at the order 4 :

$$
t h x=x-\frac{x^{3}}{3}+o\left(x^{4}\right) \quad(1 \text { point })
$$

So,

$$
\frac{t h x}{x}=1-\frac{x^{2}}{3}+o\left(x^{3}\right) . \quad(0.25 \text { point })
$$

From the other hand, one has the $\mathrm{LE}_{3}(0)$ of the function $\ln (1+t)$ given by :

$$
\ln (1+t)=t-\frac{t^{2}}{2}+\frac{t^{3}}{3}+o\left(t^{3}\right) . \quad(1 \text { point })
$$

Put $t=\frac{-x^{2}}{3}$, so $\lim _{x \rightarrow 0} t=0$. (0.25 point +0.25 point $)$. Then:

$$
\begin{aligned}
\ln \left(\frac{t h x}{x}\right) & =\left(-\frac{x^{2}}{3}\right)-\frac{\left(-\frac{x^{2}}{3}\right)^{2}}{2}+\frac{\left(-\frac{x^{2}}{3}\right)^{3}}{3}+o\left(\left(-\frac{x^{2}}{3}\right)^{3}\right) \\
& \Rightarrow \ln \left(\frac{t h x}{x}\right)=-\frac{x^{2}}{3}+o\left(x^{3}\right) \quad \text { (1 point). }
\end{aligned}
$$

- This means that $A=\lim _{x \rightarrow 0} \ln \left(\frac{t h x}{x}\right)=\lim _{x \rightarrow 0}\left[\frac{-x^{2}}{3}+o\left(x^{3}\right)\right]=0 . \quad$ (1 point).

Test 2 Correction: Derivability and LE, G4 et G5

1. Consider the function :(0.25 point/right answer=1.25 points).

$$
\begin{aligned}
f: & {[0,1[\rightarrow[\sqrt{2},+\infty[} \\
& x \mapsto f(x)=\frac{\sqrt{2}}{\sqrt{1-x^{2}}}
\end{aligned}
$$ f is even.f is continuous over \mathbb{R}.f is continuous over $[0,1[. \quad \square f$ is continuous over $] 0,1[. \quad \square f$ is continuous at 1 . \square is continuous at the right of $1 . \square f$ is continuous at the right of 0 .

$\square f$ is derivable at $1 . \quad \square f$ is derivable over $[0,1[. \quad \square f$ is derivable over [0, 1$]$.f is derivable at the right of $1 . \quad \square f$ is derivable at the right of $0 . \square f$ admits a continuous expansion at 1 .
2. Find the $\mathrm{LE}_{3}(0)$ of the function $f(x)=\ln \left(\frac{\tan x}{x}\right)$, then deduce $A=\lim _{x \rightarrow 0} \ln \left(\frac{\tan x}{x}\right)$. (4.75 points).

- Since we will devide by x, we shall consider the $\operatorname{LE}(0)$ of $\tan x$ at the order 4 :

$$
\tan x=x+\frac{x^{3}}{3}+o\left(x^{4}\right) \quad(1 \text { point })
$$

So,

$$
\frac{\tan x}{x}=1+\frac{x^{2}}{3}+o\left(x^{3}\right) . \quad(0.25 \text { point })
$$

From the other hand, one has the $\mathrm{LE}_{3}(0)$ of the function $\ln (1+t)$ given by :

$$
\ln (1+t)=t-\frac{t^{2}}{2}+\frac{t^{3}}{3}+o\left(t^{3}\right) . \quad(1 \text { point })
$$

Put $t=\frac{x^{2}}{3}$, so $\lim _{x \rightarrow 0} t=0$. (0.25 point +0.25 point). Then:

$$
\begin{aligned}
\ln \left(\frac{\tan x}{x}\right) & =\left(\frac{x^{2}}{3}\right)-\frac{\left(\frac{x^{2}}{3}\right)^{2}}{2}+\frac{\left(\frac{x^{2}}{3}\right)^{3}}{3}+o\left(\left(\frac{x^{2}}{3}\right)^{3}\right) \\
& \Rightarrow \ln \left(\frac{\tan x}{x}\right)=\frac{x^{2}}{3}+o\left(x^{3}\right) . \quad(1 \text { point })
\end{aligned}
$$

- This means that $A=\lim _{x \rightarrow 0} \ln \left(\frac{\tan x}{x}\right)=\lim _{x \rightarrow 0}\left[\frac{x^{2}}{3}+o\left(x^{3}\right)\right]=0 . \quad$ (1 point).

Test 3 : Integration, G2

1. Integrate $I=\int_{-1}^{1} \frac{\arctan x}{1+x^{2}} d x$. (1 point).
2. Integrate $J=\int_{0}^{1} \frac{\arctan x}{1+x^{2}} d x$. (2 points).
3. Integrate by parts $K=\int \frac{x \arcsin x}{\sqrt{1-x^{2}}} d x$. (3 points).

Test 3 : Integration, G1

1. Integrate $I=\int_{\frac{-1}{2}}^{\frac{1}{2}} \frac{(\arcsin x)^{3}}{\sqrt{1-x^{2}}} d x$. (1 point).
2. Integrate $J=\int_{0}^{1} \frac{(\arcsin x)^{3}}{\sqrt{1-x^{2}}} d x$. (2 points).
3. Integrate by parts $K=\int x \arctan x d x$. (3 points).

Test 3 : Integration, G3 and G6

1. Integrate $I=\int_{-1}^{1} \frac{(\arctan x)^{3}}{1+x^{2}} d x$. (1 point).
2. Integrate $J=\int_{0}^{1} \frac{(\arctan x)^{3}}{1+x^{2}} d x$. (2 points).
3. Integrate by parts $K=\int x\left(1+\tan ^{2} x\right) d x$. (3 points).

Test 3 : Integration, G4 and G5

1. Integrate $I=\int_{-1}^{1} \frac{\arcsin x}{\sqrt{1-x^{2}}} d x$. (1 point).
2. Integrate $J=\int_{0}^{1} \frac{\arcsin x}{\sqrt{1-x^{2}}} d x$. (2 points).
3. Integrate by parts $K=\int\left(x^{n+1}+1\right) \ln x d x .(n \in \mathbb{N}) . \quad$ (3 points).

Test 3 correction : integration, G2

1. Integrate $I=\int_{-1}^{1} \frac{\arctan x}{1+x^{2}} d x$.

Since $x \rightarrow \frac{\arctan x}{1+x^{2}}$ is an odd function over $[-1,1]$, which is symmetrical with respect to 0 , then $I=0$. (1 point).
2. Integrate $J=\int_{0}^{1} \frac{\arctan x}{1+x^{2}} d x$.

$$
J=\int_{0}^{1} \frac{\arctan x}{1+x^{2}} d x=\left[\frac{(\arctan x)^{2}}{2}\right]_{0}^{1}=\frac{(\arctan 1)^{2}}{2}-\frac{(\arctan 0)^{2}}{2}=\frac{\left(\frac{\pi}{4}\right)^{2}}{2}=\frac{\pi^{2}}{32} .(2 \text { points })
$$

3. Integrate $K=\int \frac{x \arcsin x}{\sqrt{1-x^{2}}} d x$.

By parts:

$$
\begin{aligned}
& \text { One takes }\left\{\begin{array}{l}
u^{\prime}(x)=\frac{x}{\sqrt{1-x^{2}}} \\
v(x)=\arcsin x
\end{array} \quad(1 \text { point), }\right. \\
& \text { to get }\left\{\begin{array}{l}
u(x)=\frac{1}{(-2)} \int(-2 x)\left(1-x^{2}\right)^{-\frac{1}{2}} d x=\frac{1}{(-2)}\left[\frac{\sqrt{1-x^{2}}}{\frac{1}{2}}\right] . \text { (1 point) } \\
v^{\prime}(x)=\frac{1}{\sqrt{1-x^{2}}}
\end{array}\right.
\end{aligned}
$$

The integration by parts formula gives us:

$$
\begin{aligned}
K & =\int u^{\prime} v=[u v]-\int v^{\prime} u \quad(0.5 \text { point }) \\
& =-\arcsin x \sqrt{1-x^{2}}-\int(-1) d x \\
K & =-\arcsin x \sqrt{1-x^{2}}+x+C,(C \in \mathbb{R}) .(0.5 \text { point })
\end{aligned}
$$

Test 3 correction: Integration, G1

1. Integrate $I=\int_{\frac{-1}{2}}^{\frac{1}{2}} \frac{(\arcsin x)^{3}}{\sqrt{1-x^{2}}} d x$.

Since $x \rightarrow \frac{(\arcsin x)^{3}}{\sqrt{1-x^{2}}}$ is an odd function over $\left[\frac{-1}{2}, \frac{1}{2}\right]$, which is symmetrical with respect to 0 , then $I=0$. (1 point).
2. Integrate $J=\int_{0}^{1} \frac{(\arcsin x)^{3}}{\sqrt{1-x^{2}}} d x$.

$$
J=\int_{0}^{1} \frac{(\arcsin x)^{3}}{\sqrt{1-x^{2}}} d x=\left[\frac{(\arcsin x)^{4}}{4}\right]_{0}^{1}=\frac{(\arcsin 1)^{4}}{4}-\frac{(\arcsin 0)^{2}}{4}=\frac{\left(\frac{\pi}{2}\right)^{4}}{4}=\frac{\pi^{4}}{64} .(2 \text { points })
$$

3. Integrate $\int x \arctan x d x$.

By parts:

$$
\begin{aligned}
& \text { One takes }\left\{\begin{array}{l}
u^{\prime}(x)=x \\
v(x)=\arctan x
\end{array} \quad\right. \text { (1 point), } \\
& \text { to get }\left\{\begin{array}{l}
u(x)=\frac{x^{2}}{2} \\
v^{\prime}(x)=\frac{1}{1+x^{2}}
\end{array} \quad .\right. \text { (1 point) }
\end{aligned}
$$

The integration by parts formula gives us :

$$
\begin{aligned}
K & =\int u^{\prime} v=[u v]-\int v^{\prime} u \quad(0.5 \text { point }) \\
& =\frac{x^{2}}{2} \arctan x-\int \frac{x^{2}}{2} \frac{1}{1+x^{2}} d x \\
& =\frac{x^{2}}{2} \arctan x-\frac{1}{2} \int \frac{x^{2}+1-1}{1+x^{2}} d x \\
& =\frac{x^{2}}{2} \arctan x-\frac{1}{2} \int\left(1-\frac{1}{1+x^{2}}\right) d x \\
K & =\frac{x^{2}}{2} \arctan x-\frac{1}{2}(x-\arctan x)+C,(C \in \mathbb{R}) . \quad(0.5 \text { point })
\end{aligned}
$$

Test 3 Correction: Integration, G3 and G6

1. Integrate $I=\int_{-1}^{1} \frac{(\arctan x)^{3}}{1+x^{2}} d x$.

Since $x \rightarrow \frac{(\arctan x)^{3}}{1+x^{2}}$ is an odd function over $[-1,1]$, which is symmetrical with respect to 0 , then $I=0$. (1 point).
2. Integrate $J=\int_{0}^{1} \frac{(\arctan x)^{3}}{1+x^{2}} d x$.

$$
J=\int_{0}^{1} \frac{\arctan x}{1+x^{2}} d x=\left[\frac{(\arctan x)^{4}}{4}\right]_{0}^{1}=\frac{(\arctan 1)^{4}}{4}-\frac{(\arctan 0)^{4}}{4}=\frac{\left(\frac{\pi}{4}\right)^{4}}{4}=\frac{\pi^{4}}{4^{5}} .(2 \text { points })
$$

3. Integrate $\int x\left(1+\tan ^{2} x\right) d x$.

By parts:

$$
\begin{aligned}
& \text { One takes }\left\{\begin{array}{l}
u^{\prime}(x)=1+\tan ^{2} x \\
v(x)=x
\end{array}\right. \\
& \text { to get }\left\{\begin{array}{l}
u(x)=\tan x \\
v^{\prime}(x)=1
\end{array} .(1 \text { point })\right. \\
& .
\end{aligned}
$$

The integration by parts formula gives us :

$$
\begin{aligned}
K & =\int u^{\prime} v=[u v]-\int v^{\prime} u \quad(0.5 \text { point }) \\
& =x \tan x-\int \tan x d x \\
& =x \tan x-\int \frac{\sin x}{\cos x} d x \\
K & =x \tan x+\ln |\cos x|+C,(C \in \mathbb{R}) .(0.5 \text { point })
\end{aligned}
$$

Test 3 Correction: Integration, G4 et G5

1. Integrate $I=\int_{-1}^{1} \frac{\arcsin x}{\sqrt{1-x^{2}}} d x$.

Since $x \rightarrow \frac{\arcsin x}{\sqrt{1-x^{2}}}$ is an odd function over $[-1,1]$, which is symmetrical with respect to 0 , then $I=0$. (1 point).
2. Integrate $J=\int_{0}^{1} \frac{\arcsin x}{\sqrt{1-x^{2}}} d x$.

$$
J=\int_{0}^{1} \frac{\arcsin x}{\sqrt{1-x^{2}}} d x=\left[\frac{(\arcsin x)^{2}}{2}\right]_{0}^{1}=\frac{(\arcsin 1)^{2}}{2}-\frac{(\arcsin 0)^{2}}{2}=\frac{\left(\frac{\pi}{2}\right)^{2}}{2}=\frac{\pi^{2}}{8} .(2 \text { points })
$$

3. Integrate $\int\left(x^{n+1}+1\right) \ln x d x . \quad(n \in \mathbb{N})$. (3 points).

By parts:

$$
\begin{aligned}
& \text { One takes }\left\{\begin{array}{l}
u^{\prime}(x)=\left(x^{n+1}+1\right) \\
v(x)=\ln x
\end{array} \quad(1 \text { point })\right. \\
& \text { to get }\left\{\begin{array}{l}
u(x)=\int\left(x^{n+1}+1\right) d x=\left(\frac{x^{n+2}}{n+2}+x\right) \\
v^{\prime}(x)=\frac{1}{x}
\end{array}\right.
\end{aligned}
$$

The integration by parts formula gives us :

$$
\begin{aligned}
K & =\int u^{\prime} v=[u v]-\int v^{\prime} u \quad(0.5 \text { point }) \\
& =\left(\frac{x^{n+2}}{n+2}+x\right) \ln x-\int\left(\frac{x^{n+2}}{n+2}+x\right) \frac{1}{x} d x \\
& =\left(\frac{x^{n+2}}{n+2}+x\right) \ln x-\int\left(\frac{x^{n+1}}{n+2}+1\right) d x \\
K & =\left(\frac{x^{n+2}}{n+2}+x\right) \ln x-\left(\frac{x^{n+2}}{(n+2)^{2}}+x\right)+C,(C \in \mathbb{R}) . \quad(0.5 \text { point })
\end{aligned}
$$

