Exercise 1.

Let us consider the following logic functions

$$
f(a, b, c, d)=a \cdot b+\bar{a} \cdot \bar{c} \cdot \bar{d} \text { and } g(a, b, c, d)=(\bar{a}+\bar{b}+\bar{c}) \cdot(a+d) .
$$

- Give a logic circuit based on 2-input NAND gates and a logic circuit based on 2-input NOR gates for each of these functions.

Exercise 2.

We define a logical function f by the following truth table.

1. Write the disjonctif canonical form of the output.
2. Using theorems and laws of Boolean algebra to simplify the logical expression.
3. Give a logic circuit, using only 2-input NAND gates to implement the function f.

a	b	c	$f(a, b, c)$
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

Exercise 3.

1. Write minterm and maxterm Boolean functions expressed by

$$
f(a, b, c)=\prod(0,3,7)
$$

2. Let us define the Boolean function g by $g(a, b, c)=a \cdot b+\bar{c}$.

- Write minterm and maxterm expressions of f.

3. Simplify the Boolean functions f and g using the Karnaugh mapping method
4. Using the Karnaugh mapping method, simplify the Boolean function h, defined by $h(a, b, c, d)=\Sigma(1,2,5,8,9,11,15)+\sum_{\varphi}(0,3,10,14)$.

Tlemcen University Boolean Algebra-Simplification methods
U.Y 2023-2024

Exercise 4.

