Exercise 1.

Let us consider the following logic functions

 $f(a, b, c, d) = a.b + \overline{a}.\overline{c}.\overline{d} \text{ and } g(a, b, c, d) = (\overline{a} + \overline{b} + \overline{c}).(a+d).$

— Give a logic circuit based on 2-input NAND gates and a logic circuit based on 2-input NOR gates for each of these functions.

Exercise 2.

We define a logical function f by the following truth table.

- 1. Write the disjonctif canonical form of the output.
- 2. Using theorems and laws of Boolean algebra to simplify the logical expression.
- Give a logic circuit, using only 2-input NAND gates to implement the function f.

a	b	c	f(a,b,c)				
0	0	0	0				
0	0	1	0				
0	1	0	1				
0	1	1	1				
1	0	0	1				
1	0	1	1				
1	1	0	1				
1	1	1	0				

Exercise 3.

1. Write minterm and maxterm Boolean functions expressed by

$$f(a,b,c) = \prod(0,3,7)$$

- 2. Let us define the Boolean function g by $g(a, b, c) = a.b + \overline{c}$. — Write minterm and maxterm expressions of f.
- 3. Simplify the Boolean functions f and g using the Karnaugh mapping method
- 4. Using the Karnaugh mapping method, simplify the Boolean function h, defined by $h(a, b, c, d) = \sum (1, 2, 5, 8, 9, 11, 15) + \sum_{\varphi} (0, 3, 10, 14).$

	Machine Framework1		
Tlemcen University	S1-L1-M+MI	Departement	of Mathematics
Faculty of Sciences	Boolean Algebra-Simplification	${\it methods}$	U.Y 2023-2024

Exercise 4.

ab						ab					
		00	<i>01</i>	11	10			00	<i>01</i>	11	10
	0	1	1	1	1		0	1	x	1	x
C	1	1	0	0	1	C	1	1	0	1	1
					1	1				1	

		ab				
		00	<i>01</i>	11	10	
cd	00	1	0	0	1	
	01	0	0	0	0	
	11	1	1	1	1	
	10	1	1	1	1	

		ab				
		00	<i>01</i>	11	10	
cd	00	1	1	0	1	
	01	0	0	x	0	
	11	1	x	0	1	
	10	1	1	x	1	

	ab						
	00	<i>01</i>	11	10			
00	x	0	0	1			
01	1	0	0	1			
11	x	0	0	0			
10	1	1	x	1			

cd