
Data representation

The present chapter is an extension of the previous chapter. As the arithmetic unit of a digital
system recognizes only the binary states 0 and 1, a code is necessary to manipulate and transfer
alphanumeric data (numbers, letters, special characters).

0.1 Binary Codes

0.1.1 Straight Binary

Straight Binary code is simply the radix 2 number system, It is used to represent natural
numbers.

Decimal Straight Binary Code
0 0
1 1
2 10
3 11
4 100
5 101
6 110
7 111
8 1000
9 1001
10 1010
11 1011
12 1100
13 1101
14 1110
15 1111

Example 1. Going from 3 = 112 to 4 = 100, two bits change. This problem is solved by the
following code.

0.1.2 Gray code

Gray code (or re�ected binary code) is a non-weighted code, as it does not ascribe a speci�c
weight to each bit position. It is not used for arithmetic calculations. The process of generation

1

0.1. BINARY CODES A.Chouraqui

of higher-bit Gray codes using the re�ect-and-pre�x method is illustrated in Table 0.1.2 ; the
columns of bits between those representing the Gray codes give the intermediate step of writing
the code followed by the same written in reverse order.

Table 0.1.2 lists the binary and Gray code equivalents of decimal numbers 0 − 15, an exa-
mination shows that the last and the �rst entry also di�er by only 1 bit. This is known as the
cyclic property of the Gray code.

Table 1 � Generation of higher-bit Gray code numbers
One-bit Gray code Two-bit Gray code Three-bit Gray code Four-bit Gray code
0 0 00 00 000 000 0000
1 1 01 01 001 001 0001

1 11 11 011 011 0011
0 10 10 010 010 0010

10 110 110 0110
11 111 111 0111
01 101 101 0101
00 100 100 0100

100 100
101 1101
111 1111
110 1110
010 1010
011 1011
001 1001
000 1000

Table 2 � Gray code
Decimal Straight Binary Gray Decimal Straight Binary Gray

0 0000 0000 8 1000 1100
1 0001 0001 9 1001 1101
2 0010 0011 10 1010 1111
3 0011 0010 11 1011 1110
4 0100 0110 12 1100 1010
5 0101 0111 13 1101 1011
6 0110 0101 14 1110 1001
7 0111 0100 15 1111 1000

Straight Binary-Gray code and Gray code-Straight Binary conversions

The conversion of a Straight Binary number to Gray code is carried out by making use of the
following observations :

� the most signi�cant Gray code bit situated to the extreme left, is the same as the corr-
responding MSB for the Straight Binary number.

� starting from the left, add, without taking into account the carry-out bit, each pair of
adjacent bits to obtain the next bit in Gray code.

To convert Gray code to a Straight Binary number :

2

A.Chouraqui

� the MSB of the Straight Binary number, located at the extreme left, is identical to the
corresponding Gray code bit ;

� starting from the left, add each new bit of the Straight Binary code to the next bit of the
Gray code, without taking into account any carry-out bit, to obtain the next bit of the
Straight Binary code.

Example 2. 1. Convert the Straight Binary number (101101)2 to Gray code.

1 + 0 + 1 + 1 + 0 + 1
↓ ↓ ↓ ↓ ↓ ↓
1 1 1 0 1 1

2. Convert the Gray code (110011)GR to a Straight Binary number.

1 1 0 0 1 1
↓ ↗ ↓ ↗ ↓ ↗ ↓ ↗ ↓ ↗ ↓
1 0 0 0 1 0

0.1.3 Binary Coded Decimal

The binary coded decimal (BCD) is a type of binarry code used to represent a given decimal
number in an aquivalent binary form. The BCD equivalent of a decimal number is written
by replacing each decimal digit with its four-bit binary equivalent. As an example, the BCD
equivalent of 425 is written as (0100 0010 0101)BCD. Table 0.1.2 lists the BCD code.

Table 3 � BCD code
Decimal BCD code

0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
8 1000
9 1001

BCD-to-Binary Conversion

A given BCD number can be converted into an equivalent binary number by �rst writing its
decimal equivalent and then converting it into its binary equivalent.

Example 3. Find the binary equivalent of the BCD number (0110 1000 0011 1001)BCD.

The corresponding decimal number is :6839, therefore

3

0.1. BINARY CODES A.Chouraqui

6839 2

6838

1

3419 2

3418

1

1709 2

1708

1

854 2

854

0

427 2

426

1

213 2

212

1

106 2

106

0

53 2

52

1

26 2

26

0

13 2

12

1

6 2

6

0

3 2

2

1

1

6839 = 11010101101112

Binary-to-BCD Conversion

The process of binary-to-BCD conversion is the same as the process of BCD-to-binary conver-
sion executed in reverse order.

Example 4. Find the BCD equivalent of the binary number 100001110011. The decimal equivalent
of this binary number is 4323

0.1.4 Excess-3 Code

The excess-3 code is another important BCD code. The excess-3 for a given decimal number is
determined by adding ′3′ to each decimal digit in the given number and then replacing each digit
of the newly found decimal number by its four-bit binary equivalent. Table 4 lists the Excess-3
code for the decimal numbers 0− 9.

Table 4 � Excess-3 Code
Decimal number Excess-3 code Decimal number Excess-3 code

0 0011 5 1000
1 0100 6 1001
2 0101 7 1010
3 0110 8 1011
4 0111 9 1100

Example 5. Find the excess-3 code for the decimal number 541.
� The addition of ′3′ to each digit yields the three new numbers ′8′,′ 7′ and ′4′.
� The corresponding four-bit binary equivalents are 1000, 0111 and 0100 respectively.
� The excess-3 code for 541 is therefore given by : 100001110100XS−3.

The equivalent decimal number to a given excess-3 code can be determined by �rst splitting
the number into four-bit groups, starting from the right, and then subtracting 0011 from each

4

A.Chouraqui

four-bit group. The new number is the BCD equivalent of the given excess-3 code, which can
subsequently be converted into the equivalent decimal number.

Example 6. Find the decimal equivalent of the excess-3 number (010111000011)XS−3.
Subtracting 0011 from each four-bit group, we obtain the BCD number code 0011 1001 0000,

so the decimal equivalent is : 390.

0.2 Alphanumeric Codes

Alphanumeric codes, also called UTF character codes, are binary codes used to represent al-
phanumeric data. The codes write alphanumeric data, including letters of the alphabet, numbers,
mathematical symbols and punctuation marks, in a form that is understandable and processable
by a computer. These codes enable us to interface input-output devices such as keyboards, prin-
ters, VDUs, etc, with the computer. Two widely used alphanumeric codes include the ASCII and
EBCDIC codes but they have a limitation in terms of the number of characters they can encode,
so they not permit multilingual computer processing. Unicode, developed jointly by the Unicode
Consortium and the International Standards Organization (ISO), is the most complete character
encoding scheme that allows text of all forms and languages to be encoded for use by compters.

0.2.1 ASCII code

The ASCII (American Standard Code for Information Interchange), pronounced 'ask-ee', is
strictly a seven-bit code based on the English alphabet, ASCII codes are used to represent alpha-
numeric data in computers, communications equipment and other devices. It is a seven-bit code,
it can at the most represent 128 characters. It currently de�nes 95 printable characters including
26 upper-case letters (A to Z), 26 lower-case letters (a to z), 10 numerals (0 to 9) and 33 special
characters including mathematical symbols, punctuation marks and space character. It de�nes
codes for 33 nonprinting, mostly obsolete control characters that a�ect how text is processed.
Table lists the ASCII codes for all 128 characters. When the ASCII code was introduced, many
computers dealt with eight-bit groups (or bytes) as the smallest unit of information. The eighth
bit was commonly used as a parity bit for error detection on communication lines and other
device-speci�c functions. Machines that did not use the parity bit typically set the eighth bit to
′0′.

Example 7. Represent YES in ASCII code (hexadecimal). From Table5 ; we have Y :59, E :45,
S :53. Therefore YES is coded by 59 45 53.

0.2.2 EBCDIC code

The EBCDIC (Extended Binary Coded Decimal Interchange Code), pronounced 'eb-si-dik',
is another widely used alphanumeric code, mainly popular with larger systems. The code was
created by IBM to extend the binary coded decimal that existed at that time. All IBM mainframe
computer peripherals and operating systems use EBCDIC code, and their operating systems
provide ASCII and Unicode modes to allow translation between di�erent encodings. It is an
eight-bit code and thus can accommodate up to 256 characters. A single byte in EBCDIC is
divided into two nibbles (four-bit groups)

Example 8. 'K' is coded in EBCDIC by D2 in hexadecimal and 1101︸︷︷︸
zone

0010︸︷︷︸
digit

; 'zone' represents the

category and 'digit' identi�es the speci�c character.

5

0.2. ALPHANUMERIC CODES A.Chouraqui

0.2.3 Unicode

As brie�y mentioned in the earlier sections, encodings such as ASCII, EBCDIC and their
variants do not have a su�cient number of chracters to be able to encode alphanumeric data
of all forms, scripts and languages. Two di�erent encodings may use the same number for two
di�erent characters or di�erent numbers for the same characters. For example, 4B (in hex)
represents the upper-case letter 'K' in ASCII code and the point '.' in the EBCDIC code.

Unicode developed jointly by the Unicode Consortium and the International Organization
for Standardization (ISO), is the most complete character encoding scheme that allows text of
all forms and languages to be encoded for use by computers. Di�erent characters in Unicode are
represented by a hexadecimal number preceded by 'U+'.

Example 9. 'T' is coded by U + 0054 and 't' is coded by U + 021B.

UTF Code

The Unicode Standard provides three distinct encoding forms for Unicode characters, using
8-bit, 16-bit and 32-bit units. These are named UTF-8, UTF-16 and UTF-32, respectively. The
"UTF" is a carryover from earlier terminology meaning Unicode Transformation Format. Each
of these three encoding forms is an equally legitimate mechanism for representing Unicode cha-
racters, each has advantages in di�erent environements.

To meet the requirement of byte-oriented, ASCII-based systems, one of the third encoding
form speci�ed by the Unicode Standard is UTF-8, we use one byte for characters in ASCII
(7bits), and two, three or four bytes for the other characters. It is more space-e�cient and more
compatible with ASCII.

From Unicode to UTF-8

For encoding character in UTF-8 we follow the following steps.

� The number of each character is provided by the Unicode standard.
� Characters with numbers from 0 to 127 are encoded in one byte, with the most signi�cant

bit always being zero.
� Characters with numbers higher than 127 are encoded using multiple bytes. In this case,

the most signi�cant bits of the �rst byte form a sequence of 1s of a length equal to the
number of bytes used to encode the character, with the following bytes having 10 as their
most signi�cant bits.

Binary UTF-8 representation Meaning
0xxxxxxx (Ascii) For 1 to 7 signi�cant bits (1 byte)
110xxxxx 10xxxxxx For 8 to 11 signi�cant bits (2 bytes)
1110xxxx 10xxxxxx 10xxxxxx For 12 to 16 signi�cant bits (3 bytes)
11110xxx 10xxxxxx 10xxxxxx 10xxxxxx For 17 to 21 signi�cant bits (4 bytes)

Example 10. Let us write the UTF-8 code of the symbol e coding in Unicode by U+20AC

1. Write 20AC in binary code : 0010000010101100.

2. We have 14 signi�cant bites : 10000010101100.

3. We encode the symbol in 3 bytes :11100010 10000010 10101100

4. We convert in hexadecimal : E282AC.

6

A.Chouraqui

0.3 Representation of numbers

0.3.1 Integers

Unsigned representation

We can easily proof that the maximal positif integer representable in binary code with n

digits ; is 2n − 1. Suppose N be the maximal positif integer, in n bits binary code N =

n−1∑
i=0

2i =

20 + 21 + 22 + · · ·+ 2n−1︸ ︷︷ ︸
sum of a geometric sequence

=
2n − 1

2− 1
= 2n − 1.

Therefore, an n−bit binary representation can be used to represent decimal numbers in the
range of 0 to 2n−1 ; n représents the magnitude and c = 2n−1 the capacity of register containing
this number. For su�ciently large n, we can write c ≃ 2n, then n ≃ log2c. This relationship
allows for estimating the length of a register who can contain a given number.

Example 11. Let us �nd the minimum size of a register required to represent integers less than
or equal 300. We must search the naturel number n such that 2n ≃ 300, so n ≃ log2300 ≃ 8.22.
So, it is necessary to design a register with capacity at least nine bits.

Sign-magnitude representation

In the sign-bit representation of positive and negative decimal numbers, the MSB represents
the 'sign', with a ′0′ denothing a plus sign and a ′1′ denoting a minus sign. The remaining bits
represent the magnitude. In the following, we represent a signed number using 8, 16, 32,... bits.

Example 12. +7 = 0 0 0 0 0 1 1 1 and -7 = 1 0 0 0 0 1 1 1

An n-bit binary representation can be used to represent decimal numbers in the range of
−(2n−1 to + (2n−1 − 1 ; we note this representation by SM (Sign-magnitud).

Example 13. In 4-bit SM representation, we can represent decimal numbers between −7 and +7
as follow

Decimal SM
+7 0111
+6 0110
+5 0101
+4 0100
+3 0011
+2 0010
+1 0001
+0 0000
-0 1000
-1 1001
-2 1010
-3 1011
-4 1100
-5 1101
-6 1110
-7 1111

Remark. The sign-magnitude representation presents two problems. Firstly in mathematics +0 =
−0 = 0 but we remark that zero has two representations in SM representation. Secondly, this

7

0.3. REPRESENTATION OF NUMBERS A.Chouraqui

representation is not appropriate for addition operations. For example (−4) + (+3) = +1 but in
SM representation (for reduction of magnitude we take 4 bits) we have (1100)SM + (0011)SM =
(1111)SM = −7, it's incorrect.

1's Complement

We �rst de�ne the 1's Complement of binary number.

De�nition 1. To obtain the 1's Complement of binary number, we inverse 1 to 0 and 0 to 1.

Example 14. Let us de�ne the 1's Complement of 100102.
100102 = (01101)C1

De�nition 2. To obtain the 1's Complement of a sign-magnitude number, the positive numbers

remain unchanged and for negatif number ; we keep the sign bit and convert the remaining bits

to 1's Complement.

Example 15. The 1's Complement of the decimal integer +9 is (00001001)C1 = (00001001)SAV ,
the 1's Complement of the decimal integr i −9 = −10012 = (10001001)SM = (11110110)SM .

Again, n bit notation can be used to represent numbers in the range from −(2n−1 − 1) to
+(2n−1 − 1) using the 1's complement format.

Example 16. In 4−bit 1's Complement representation, we can represent decimal numbers between
−7 and + 7 as follow

Decimal SM 1's Complement
+7 0111 0111
+6 0110 0110
+5 0101 0101
+4 0100 0100
+3 0011 0011
+2 0010 0010
+1 0001 0001
+0 0000 0000
-0 1000 1111
-1 1001 1110
-2 1010 1101
-3 1011 1100
-4 1100 1011
-5 1101 1010
-6 1110 1001
-7 1111 1000

Remark. Again, in 1's Complement representation zero has two representations and this is a
drawback.

1's Complement addition

One's complement addition is based on the following principle.
� If no carry is generated by the sign bit, the result is accurate and expressed in 1's Com-

plement.
� If a carry is generated by the sign bit, it will be added to the result of the operation which

is expressed in 1's Complement.

8

A.Chouraqui

Example 17. Let us do the following 1's complement addition. 35 + (−25) = (+100011)2 +
(−11001)2 = (00100011)SM + (10011001)SM = (00100011)C1 + (11100110)C1

10 10 1 0 10 10 1 1
+

1 1 1 0 0 1 1 0
1 ↪→ 0 0 0 0 1 0 10 1
+ 1
= 0 0 0 0 1 0 1 0

00001010C1 = +10102 = +10, the result is correct.
15 − 34 = +15 + (−34) = (+1111)2 + (−100010)2 = (00001111)SM + (10100010)SM =

(00001111)C1 + (11011101)C1

0 0 10 10 11 11 11 1
+

1 1 0 1 1 1 0 1
= 1 1 1 0 1 1 0 0

(11101100)C1 = (10010011)SAV = (−10011)2 = −19, the result is correct.

2's Complement

We �rst de�ne the 2's Complement of binary number.

De�nition 3. To obtain the 2's Complement of binary number, we add 1 to the 1's Complement.

Example 18. Let us give the 2's Complement of 10011. We �rst de�ne the 1's Complement
of this binary number : 100112 = (01100)C1, then we add 1 to obtain the 2's Complement
01100 + 1 = 01101, therefore 100112 = (01100)C1 = (1101)C2

De�nition 4. To obtain the 2's Complement of a sign-magnitude number, the positive numbers

remain unchaged and for negatif number ; we keep the sign bit and convert the remaining bits to

2's Complement.

Example 19. The 2's Complement of the decimal integer +10 is (00001010)C2 = (00001010)C1 =
(00001010)SAV , the 2's Complement of the integer −10 = −00010102 = (10001010)SM =
(11110101)C1 = (11110101 + 1)C2 = (11110110)C2.

An other method to obtain the 2's Complement of integer numbers is illustrated by the
following de�nition.

De�nition 5. To obtain the 2's Complement of a sign-magnitude number, the positive numbers

remain unchaged and for negatif number ; we keep the sign bit and starting from the right, we

copy all the zeros and the �rst encountered 1, then we invert the remaining bits.

Example 20. 1. The 2's Complement of the decimal integer −10 is (11110110)C2.

2. Let us give the 2's Complement of the decimal integer −15. We �rst the SAV corresponding
number :(10001111)SM = (11110001)C2.

Remark. 1. The n−bit notation of the 2's Complement format can be used to represent all
decimal numbers from −2n−1 to + (2n−1 − 1)

2. 1 00 · · · 0︸ ︷︷ ︸
n fois

represents the smallest value on n bits in 2's Complement representation.

9

0.4. FRACTIONAL NUMBERS A.Chouraqui

Example 21. In 4−bit 2's Complement representation, we can represent decimal numbers from
−8 to + 7 as follow.

Decimal SM 1's Complement 2's Complement
+7 0111 0111 0111
+6 0110 0110 0110
+5 0101 0101 0101
+4 0100 0100 0100
+3 0011 0011 0011
+2 0010 0010 0010
+1 0001 0001 0001
+0 0000 0000 0000
-0 1000 1111 /
-1 1001 1110 1111
-2 1010 1101 1110
-3 1011 1100 1101
-4 1100 1011 1100
-5 1101 1010 1011
-6 1110 1001 1010
-7 1111 1000 1001
-8 / / 1000

Remark. 1. We see that zero has a unique representation.

2. 1000 which represented 0 in SM representation, represents -8 which is the smallest value
in 4-bit 2's Complement representation.

2's Complement addition

2's Complement addition is performed in the same manner as for 1's Complement, except
that we do not carry over the over�ow but ignore it and the result in 2's Complement.

Example 22. Let us do the following 2's Complement addition. 35 + (−25) = (00100011)SM +
(10011001)SM = (00100011)C2 + (11100111)C2, the result is correct.

10 10 1 0 10 10 11 1
+

1 1 1 0 0 1 1 1
= ̸ 1 0 0 0 0 1 0 1 0

(00001010)C2 = (00001010)SM = (1010)2 = 10.

0.4 Fractional numbers

0.4.1 Fixed-point

A �xed-point number is represented as a binary integer. The position of the decimal point
is managed by the programmer, and it's a drawback added to the limitation of values. It is
represented as follow.

Sign Entire part with n bits Fractional part with p bits

Example 23. Let us represent a number in 6 bits ; one bit for the sign, three bits for entire part
and two bits for fractional part. The minimum value is represented by (1 111 11)2 = −7.75 and
the maximum value is (0 111 11)2 = +7.75.

10

A.Chouraqui

0.4.2 Floating-Point Numbers

At the begining the Floating-point representation was not standardized and each computer
used its own format. Several standards were de�ned ; among them the IEEE 754 standard
(Institute of electrical and electronics Engineers).

Floating-point numbers are in general expressed in the form

N = σMbE , (1)

where σ is the sign ±, M is the fractional part called the signi�cand or mantissa, E is the integer
part, called the exponent, and b is the base of the number system or numeration. Fractional part
M is a p−digit number of the form (d.ddd · · · d), each digit d is an integer between 0 and b− 1.

Equation 1 in the case of decimal, hexadecimal and binary number systems will be written
as follows :

� Decimal system
N = σM10E . (2)

� Hexadecimal system
N = σM16E . (3)

� Binary system
N = σM2E . (4)

Example 24. We represent 0.00001453, 14538, (643.ACE)16 in �oating-point notation.
� 0.00001453 = 1.453× 10−5.
� 1453 = 1.453× 83.
� 643.ACE = 6.43ACE × 162.

In the case of normalized binary numbers, the leading digit which is the most signi�cant bit is
always ′1′ and thus does not need to be stored explicitly. While expressing a given mixed binary
number as a �oating-point number, the radix point is so shifted as to have the most signi�cant
bit immediately to the right of the radix point as a ′1′. The mantissa and the exponant can have
a positive or a negative value.

Example 25. Let us represent the mixed binary numbers (11.0111)2, (0.000101)2, (−0.00000011)2
in �oating-point notation.

1. (11.0111)2 will be represented as follow :

0.110111× 22 = .110111E + 0010.

Here 0.110111 is the mantissa and E + 0010 implies that the exponent is +2.

2. (0.000101)2 will be written as

0.101× 2−3 = .101E − 0011,

0.101 is the mantissa and E − 0011 implies that the exponent is −3.

3. (−0.00000011)2 will be written as

−0.11× 2−6 = −.11E − 0110.

Here −0.11 is the mantissa and E − 0110 indicates an exponent of −6.

In each of these cases, and if we want to write the mantissa with eight bits, we will represent it
as follows :

.11011100, .10100000, .11000000.

11

0.4. FRACTIONAL NUMBERS A.Chouraqui

0.4.3 IEEE-754 formats

The IEEE-754 �oating point is the most commonly used representation for real numbers
on computer. Table 6 lists characteristic parameters of single-precision and double-precision.
Floating-point numbers represented in IEEE-754 format have three components including the
sign, the exponent and the mantissa. The n−bit exponent �eld needs to represent both positive
and negative exponent values. To achieve this, a bias equal to 2n−1 − 1 is added to the actual
exponent in order to obtain the stored exponent. For the case of single-precision format, we add
28−1− 1 = 127 to the actual exponent then we obtain the biased exponent which is noted by Eb.
Figure 1 shows the basics constituent parts of the single-precision format.

Sign (1 bit) Biased Exponent (8 bits) Mantissa (23 bits)

Figure 1 � Single-precision format

Example 26. 1. Let us represent the number 2654 in IEEE-754 single-precision format.

2654 = 1010010111102 = 1.01001011110× 211. The three components are :
� Sign = 0.
� Mantissa = 01001011110.
� Actual exponent=11 and biased exponent ; Eb = 11 + 127 = 138 = 100010102.
Therefore, we represent the number as follow.

0︸︷︷︸
Sign

10001010︸ ︷︷ ︸
Biased exponent

01001011110000000000000︸ ︷︷ ︸
Mantissa

. We change the number to hexadeci-

mal form in order to make writing easier ;

0100 0101 0010 0101 1110 0000 0000 0000 = 452E00016.

2. Let us represent the hexadecimal IEEE-754 single-precision format D2AC5000 in decimal.

C32C5000 = 1100 0011 0010 1100 0101 0000 0000 0000 = 11000011001011000101000000000000.
The three components are :
� Sign =1, hence the number is negative.
� Biased exponent =100001102 = 134, actual exponent is given by E = 134− 127 = 7.
� Mantissa=01011000101.
So the number is −1.01011000101× 27 = −10101100.01012 = −(27 +25 +23 +22 +2−2 +
2−3 = −172.375.

12

A.Chouraqui

Table 5 � ASCII Code table
Dec Hex Char Dec Hex Char Dec Hex Char Dec Hex Char
0 0 NUL 32 20 SP 64 40 @ 96 60 '
1 1 SOH 33 21 ! 65 41 A 97 61 a
2 2 STX 34 22 " 66 42 B 98 62 b
3 3 ETX 35 23 # 67 43 C 99 63 c
4 4 EOT 36 24 $ 68 44 D 100 64 d
5 5 ENQ 37 25 % 69 45 E 101 65 e
6 6 ACK 38 26 & 70 46 F 102 66 f
7 7 BEL 39 27 ` 71 47 G 103 67 g
8 8 BS 40 28 (72 48 H 104 68 h
9 9 HT 41 29) 73 49 I 105 69 i
10 A LF 42 2A * 74 4A J 106 6A j
11 B VT 43 2B + 75 4B K 107 6B k
12 C NP 44 2C , 76 4C L 108 6C l
13 D CR 45 2D - 77 4D M 109 6D m
14 E SO 46 2E . 78 4E N 110 6E n
15 F SI 47 2F / 79 4F O 111 6F o
16 10 DLE 48 30 0 80 50 P 112 70 p
17 11 DC1 49 31 1 81 51 Q 113 71 q
18 12 DC2 50 32 2 82 52 R 114 72 r
19 13 DC3 51 33 3 83 53 S 115 73 s
20 14 DC4 52 34 4 84 54 T 116 74 t
21 15 NAK 53 35 5 85 55 U 117 75 u
22 16 SYN 54 36 6 86 56 V 118 76 v
23 17 ETB 55 37 7 87 57 W 119 77 w
24 18 CAN 56 38 8 88 58 X 120 78 x
25 19 EM 57 39 9 89 59 Y 121 79 y
26 1A SUB 58 3A : 90 5A Z 122 7A z
27 1B ESC 59 3B ; 91 5B [123 7B {
28 1C FS 60 3C < 92 5C \ 124 7C |
29 1D GS 61 3D = 93 5D] 125 7D }
30 1E RS 62 3E > 94 5E ∧ 126 7E ∼
31 1F US 63 3F ? 95 5F - 127 7F DEL

NUL Null DLE Data link escape
SOH Start of heading DC1 Device control 1
STX Start of text DC2 Device control 2
ETX End of text DC3 Device control 3
EOT End of transmission DC4 Device control 4
ENQ Enquiry NAK Negative acknowledge
ACK Acknowledge SYN Synchronous idle
BEL Bell ETB End of transmission block
BS Backspace CAN Cancel
HT Horizontal tab EM End of medium
LF Line feed SUB Substitute
VT Vertical tab ESC Escape
FF Form feed FS Fire separator
CR Carriage return GS Group separator
SO Shift out RS Record separator
SI Shift in US Unit separator
SP Space DEL Delete

13

0.4. FRACTIONAL NUMBERS A.Chouraqui

Table 6 � characteristic parameters of IEE-754 format
Precision Sign (bit) Exponent (bits) Mantissa (bits) Total length (bits)
Single 1 8 23 32
Double 1 11 52 64

14

	Binary Codes
	Straight Binary
	Gray code
	Binary Coded Decimal
	Excess-3 Code

	Alphanumeric Codes
	ASCII code
	EBCDIC code
	Unicode

	Representation of numbers
	Integers

	Fractional numbers
	Fixed-point
	Floating-Point Numbers
	IEEE-754 formats

