Supervised work $\mathrm{N}^{\circ} 2$ of Mechanics

Vector analysis

Exercise 1

$\vec{\imath}, \vec{\jmath}$ and \vec{k} being the unit vectors of the rectangular axes Oxyz, we consider the vectors:

$$
\overrightarrow{r_{1}}=\vec{\imath}+3 \vec{\jmath}-2 \vec{k}, \quad \overrightarrow{r_{2}}=4 \vec{\imath}-2 \vec{\jmath}+2 \vec{k} \quad \text { and } \quad \overrightarrow{r_{3}}=3 \vec{\imath}-\vec{\jmath}+2 \vec{k}
$$

1. Show these 3 vectors graphically.
2. Calculate their moduli
3. Calculate products $\overrightarrow{r_{1}} \cdot \overrightarrow{r_{2}}$ and $\overrightarrow{r_{1}} \wedge \overrightarrow{r_{2}}$.

Exercise 2

We give the three vectors $\overrightarrow{V_{1}}(1,1,0), \overrightarrow{V_{2}}(0,1,0)$ and $\overrightarrow{V_{3}}(0,0,2)$.

1. Calculate norms $\left\|\overrightarrow{V_{1}}\right\|,\left\|\overrightarrow{V_{2}}\right\|$ and $\left\|\overrightarrow{V_{3}}\right\|$, deduce the unit vectors $\overrightarrow{v_{1}}, \overrightarrow{v_{2}}$ and $\overrightarrow{v_{3}}$ respectively from $\overrightarrow{V_{1}}, \overrightarrow{V_{2}}$ and de $\overrightarrow{V_{3}}$.
2. Calculate $\cos \left(\overrightarrow{\overrightarrow{v_{1}}, \overrightarrow{v_{2}}}\right)$, knowing that the corresponding angle is between 0 and π.
3. Calculate the mixed product $\overrightarrow{v_{1}} \cdot\left(\overrightarrow{v_{2}} \wedge \overrightarrow{v_{3}}\right)$. What does this product represent?

Exercise 3

Consider in space, referred to the direct orthonormal reference frame $(\mathrm{O}, \vec{\imath}, \vec{\jmath}, \vec{k})$ the points $\mathrm{A}(2$, $0,0), \mathrm{B}(2,-2,0)$ and $\mathrm{C}(2,3,-1)$.

1. Calculate the vector product $\overrightarrow{O A} \Lambda \overrightarrow{O B}$
2. Calculate the area of triangle OAB .
3. Calculate the mixed product $(\overrightarrow{O A}, \overrightarrow{O B}, \overrightarrow{O C})$, Deduce the volume of the parallelepiped built on the vectors.

Exercise 4

Let be a vector $\vec{U}=(t \vec{\imath}+3 \vec{\jmath}) /\left(\sqrt{t^{2}+9}\right)$

1. Show that \vec{U} is a unit vector?
2. Calculate its derivative with respect to time?

Supplementary exercise:

Let be three vectors \vec{A}, \vec{B} and \vec{C}, such as; $\vec{A}=-2 \vec{\imath}+\vec{\jmath}+3 \vec{k}, \quad \vec{B}=2 \vec{\imath}-\vec{\jmath}+\vec{k}, \quad \vec{C}=$ $x \vec{\imath}+1 \vec{\jmath}+z \vec{k}$
1- Calculate x and z so that the vector \vec{C} or :
a- Parallel to $\vec{A} \quad$ b- Parallel to \vec{B}
2- If, $\vec{C}=x \vec{\imath}+y \vec{\jmath}+z \vec{k} \quad$ Calculate x, y and z so that the vector \vec{C} or : Perpendicular to \vec{A} and \vec{B} at the same time.

