

Supervised work N°2 of Mechanics

Vector analysis

Exercise 1

 \vec{i} , \vec{j} and \vec{k} being the unit vectors of the rectangular axes Oxyz, we consider the vectors:

 $\vec{r_1} = \vec{\iota} + 3\vec{j} - 2\vec{k}, \qquad \vec{r_2} = 4\vec{\iota} - 2\vec{j} + 2\vec{k} \qquad \text{and} \qquad \vec{r_3} = 3\vec{\iota} - \vec{j} + 2\vec{k}$

- 1. Show these 3 vectors graphically.
- 2. Calculate their moduli
- 3. Calculate products $\overrightarrow{r_1} \cdot \overrightarrow{r_2}$ and $\overrightarrow{r_1} \wedge \overrightarrow{r_2}$.

Exercise 2

We give the three vectors $\overrightarrow{V_1}(1, 1, 0)$, $\overrightarrow{V_2}(0, 1, 0)$ and $\overrightarrow{V_3}(0, 0, 2)$.

1. Calculate norms $\|\overrightarrow{V_1}\|$, $\|\overrightarrow{V_2}\|$ and $\|\overrightarrow{V_3}\|$, deduce the unit vectors $\overrightarrow{v_1}$, $\overrightarrow{v_2}$ and $\overrightarrow{v_3}$ respectively from $\overrightarrow{V_1}$, $\overrightarrow{V_2}$ and de $\overrightarrow{V_3}$.

2. Calculate $\cos(\widehat{v_1}, \widehat{v_2})$, knowing that the corresponding angle is between 0 and π .

3. Calculate the mixed product $\overrightarrow{v_1}$. $(\overrightarrow{v_2} \land \overrightarrow{v_3})$. What does this product represent?

Exercise 3

Consider in space, referred to the direct orthonormal reference frame $(O, \vec{i}, \vec{j}, \vec{k})$ the points A(2, 0,0), B(2, -2, 0) and C(2, 3, -1).

- 1. Calculate the vector product $\overrightarrow{OA} \wedge \overrightarrow{OB}$
- 2. Calculate the area of triangle OAB.
- 3. Calculate the mixed product $(\overrightarrow{OA}, \overrightarrow{OB}, \overrightarrow{OC})$, Deduce the volume of the parallelepiped built on the vectors.

Exercise 4

Let be a vector $\vec{U} = (t\vec{\imath} + 3\vec{j})/(\sqrt{t^2 + 9})$

- 1. Show that \vec{U} is a unit vector?
- 2. Calculate its derivative with respect to time?

Supplementary exercise:

Let be three vectors \vec{A} , \vec{B} and \vec{C} , such as; $\vec{A} = -2\vec{i} + \vec{j} + 3\vec{k}$, $\vec{B} = 2\vec{i} - \vec{j} + \vec{k}$, $\vec{C} = x\vec{i} + 1\vec{j} + z\vec{k}$

1- Calculate x and z so that the vector \vec{C} or :

a- Parallel to \overrightarrow{A} b- Parallel to \overrightarrow{B}

2- If, $\vec{C} = x\vec{i} + y\vec{j} + z\vec{k}$ Calculate x, y and z so that the vector \vec{C} or : Perpendicular to \vec{A} and \vec{B} at the same time.