

<u>Supervised work N° 1 of Mecanics</u>

Dimensional analysis and uncertainty calculation

Exercise 1

Find the dimension of the following physical quantities:

Surface, Volume, Density, Frequency, Linear Velocity, Angular Velocity, Linear Acceleration, Angular Acceleration, Force, Work, Energy, Power, and Pressure.

Exercise 2

The characteristic equation of a constant temperature fluid is as follows:

$$\left(p+\frac{a}{V^2}\right)(V-b)=c$$

Or p is the pressure and V is the volume. Determine the dimensions of quantities a, b and c.

Exercise 3

Check the homogeneity of this formula:

$$p = \rho g h_1 + h_2 F$$

Such as: P pression, ρ density, g an acceleration of gravity, h_1 and h_2 are heights and F a force.

Exercise 4

 In a fluid, a ray ball (نصف القطر) r animated by a velocity v, is subjected to a friction force given by F=-6πη rv , where η is the viscosity of the fluid.

What is the dimension of η ?

2. When the ball is dropped without initial speed at the moment t = 0, its speed is written to

t > 0:
$$v = a \left(1 - exp \left(-\frac{t}{b} \right) \right)$$

Where a and b are two quantities that depend on the characteristics of the fluid. What are the dimensions of a and b?

Exercise 5

The sound emitted by the wire of a guitar is characterized by its frequency f. This frequency is a function of the force F of the wire tension, the length L and the density ρ of the wire. Find the expression of frequency f assuming the form:

$$f = K F^a L^b \rho^c$$

(With K a dimensionless constant and the frequency dimension $[f]=T^{-1}$).

Exercise 6

Let the simple pendulum formed of a ball (sphere) of radius R and mass m. The study of the effect of the air on this pendulum shows that its period T depends on a constant k, the coefficient of the air η , the radius of the ball R and its density ρ .

- 1- Find the expression of the period assuming the form: $T = K\eta^{x}R^{y}\rho^{z}$ avec $[\eta] = ML^{-1}T^{-1}$
- 2- Determine relative uncertainty on T based on $\Delta \eta$, ΔR and Δm .

Exercise 7

The speed limit reached by a weighted parachute is a function of its weight P and its surface

S, is given by: $v = \sqrt{\frac{P}{K.S}}$

1) Give the dimension of the constant k.

2) Calculate the speed limit of a parachute having the following characteristics:

M=90 kg, S=80 m2, g=9,81 m/s2, and k=1,15 MKS.

3) The weight being known to the nearest 2 % and the surface to 3 %, calculate the relative uncertainty $\Delta v/v$ on the velocity v, thus the absolute uncertainty Δv and deduce the condensed writing of this velocity.

Suplimentary Exercises

Exercise 1

The height H of a liquid of mass M contained in a cylinder of radius R is given by the relation:

$$H = \frac{(2.\,\sigma.\,\cos\alpha)}{(R.\,g.\,\rho)}$$

Where α is the liquid-cylinder contact angle, ρ the density of the liquid and g the gravity acceleration.

- 1- Using the dimensional equations, find the dimension of σ .
- 2- Determine relative uncertainty on σ based on absolute uncertainties ΔR , Δg , ΔM and $\Delta \alpha$.

Exercise 2

The resonance frequency f of an electric circuit is given by the formula:

$$f = \frac{1}{2\pi\sqrt{L.C}}$$

L and C are known with absolute uncertainties ΔL and ΔC .

Determine as a function of L, C, ΔL and ΔC absolute and relative uncertainties on f with the two differential methods.