$1^{\text {st }}$ Year LMD-M and MI

Supervised work $N^{\circ} 1$ of Mecanics

Dimensional analysis and uncertainty calculation

Exercise 1

Find the dimension of the following physical quantities:
Surface, Volume, Density, Frequency, Linear Velocity, Angular Velocity, Linear Acceleration, Angular Acceleration, Force, Work, Energy, Power, and Pressure.

Exercise 2

The characteristic equation of a constant temperature fluid is as follows:

$$
\left(p+\frac{a}{V^{2}}\right)(V-b)=c
$$

Or p is the pressure and V is the volume.
Determine the dimensions of quantities a, b and c .

Exercise 3

Check the homogeneity of this formula:

$$
p=\rho g h_{1}+h_{2} F
$$

Such as: P pression, ρ density, g an acceleration of gravity, h_{1} and h_{2} are heights and F a force.

Exercise 4

1. In a fluid, a ray ball (تصف القطر) r animated by a velocity v, is subjected to a friction force given by $\mathrm{F}=-6 \pi \eta \mathrm{rv}$, where η is the viscosity of the fluid.
What is the dimension of η ?
2. When the ball is dropped without initial speed at the moment $t=0$, its speed is written to $t>0$:

$$
v=a\left(1-\exp \left(-\frac{t}{b}\right)\right)
$$

Where a and b are two quantities that depend on the characteristics of the fluid. What are the dimensions of a and b ?

Exercise 5

The sound emitted by the wire of a guitar is characterized by its frequency f. This frequency is a function of the force F of the wire tension, the length L and the density ρ of the wire.
Find the expression of frequency f assuming the form:

$$
f=K F^{a} L^{b} \rho^{c}
$$

(With K a dimensionless constant and the frequency dimension $[\mathrm{f}]=\mathrm{T}^{-1}$).

Exercise 6

Let the simple pendulum formed of a ball (sphere) of radius R and mass m . The study of the effect of the air on this pendulum shows that its period T depends on a constant k , the coefficient of the air η, the radius of the ball R and its density ρ.

1- Find the expression of the period assuming the form:

$$
T=K \eta^{x} R^{y} \rho^{z} \text { avec }[\eta]=M L^{-1} T^{-1}
$$

2- Determine relative uncertainty on T based on $\Delta \eta, \Delta R$ and Δm.

Exercise 7

The speed limit reached by a weighted parachute is a function of its weight P and its surface S , is given by: $v=\sqrt{\frac{P}{K . S}}$

1) Give the dimension of the constant k.
2) Calculate the speed limit of a parachute having the following characteristics:
$\mathrm{M}=90 \mathrm{~kg}, \mathrm{~S}=80 \mathrm{~m} 2, \mathrm{~g}=9,81 \mathrm{~m} / \mathrm{s} 2$, and $\mathrm{k}=1,15 \mathrm{MKS}$.
3) The weight being known to the nearest 2% and the surface to 3%, calculate the relative uncertainty $\Delta \mathrm{v} / \mathrm{v}$ on the velocity v , thus the absolute uncertainty $\Delta \mathrm{v}$ and deduce the condensed writing of this velocity.

Suplimentary Exercises

Exercise 1

The height H of a liquid of mass M contained in a cylinder of radius R is given by the relation:

$$
H=\frac{(2 \cdot \sigma \cdot \cos \alpha)}{(R \cdot g \cdot \rho)}
$$

Where α is the liquid-cylinder contact angle, ρ the density of the liquid and g the gravity acceleration.

1- Using the dimensional equations, find the dimension of σ.
2- Determine relative uncertainty on σ based on absolute uncertainties $\Delta \mathrm{R}, \Delta \mathrm{g}, \Delta \mathrm{M}$ and $\Delta \alpha$.

Exercise 2

The resonance frequency f of an electric circuit is given by the formula:

$$
f=\frac{1}{2 \pi \sqrt{L . C}}
$$

L and C are known with absolute uncertainties $\Delta \mathrm{L}$ and $\Delta \mathrm{C}$.
Determine as a function of $\mathrm{L}, \mathrm{C}, \Delta \mathrm{L}$ and $\Delta \mathrm{C}$ absolute and relative uncertainties on f with the two differential methods.

