

SW N°3 of Mechanics

Kinematics of a Material Point

Exercise 1

A body moves along the x axis according to the relation $x(t)=2t^3+5t^2+5$.

- a- Determine the velocity v(t) and acceleration a(t) at each instant t.
- b- Calculate the body's position, velocity and instantaneous acceleration for $t_1=2s$ and $t_2=3s$.

c- Deduce the average velocity and acceleration of the body between t_1 and t_2 .

Exercise 2

The coordinates x and y of a moving point M in the plane (Oxy) vary with time t according to the following relationships: x=t+1 and $y=(t^2/2)+2$ Find :

- a- The equation of the trajectory
- b- Velocity and acceleration components and their moduli.
- c- Accelerations: normal a_N and tangential a_T, and deduce the radius of curvature.
- d- Nature of motion.

Exercise 3

A particle moves along a trajectory whose equation is $y=x^2$ so that at each instant $v_x=v_0=cst$. If t=0, $x_0 = 0$.

Determine :

- a- The particle's coordinates x(t) and y(t).
- b- The particle's velocity and acceleration.
- c- Normal and tangential accelerations and radius of curvature.

Exercise 4

- A) A material point M is marked by its cartesian coordinates (x,y).
- 1. Write x and y in terms of the polar coordinates ρ and θ .
- 2. Give the expression of the unit vector \vec{u} as a function of the unit vectors \vec{i} and \vec{j} .
- 3. Calculate $\frac{d\vec{u}}{d\theta}$, what does this vector represent?

B) If the position of point M is given by $\begin{cases} \overrightarrow{OM} = t^2 \vec{u} & (\omega \text{ constant}) \\ \theta = \omega t & \end{cases}$ Find the expression of the velocity vector \vec{v} in polar coordinates.

Exercise 5

A material point M is identified by its cartesian coordinates (x, y, z).

- 1. Write down the relationship between cartesian coordinates and cylindrical coordinates (using a diagram).
- 2. Write the position vector in cylindrical coordinates and deduce the velocity vector in the same coordinate system.
- 3. If the position of the point is represented in cylindrical coordinates by $\begin{cases} \rho = 4t^2 \\ \theta = \omega t \\ z = \sqrt{t} \end{cases}$

Find the expression of the velocity vector \vec{v} in cylindrical coordinates.

Exercise 6

The motion of a body is defined by the following velocity components:

 $\begin{cases} v_x = R\omega\cos(\omega t) \\ v_y = R\omega\sin(\omega t) \end{cases}$

Knowing that ω is constant and at t=0, the moving body is at point M (0, R), Determine :

- 1. The components of the acceleration vector and its modulus.
- 2. The tangential and normal components of acceleration, and deduce the radius of curvature.
- 3. The components of the position vector and deduce the equation of the trajectory.
- 4. What is the nature of the motion?

Exercise 7

A material point M moves along the OX axis with acceleration $\vec{a} = a \vec{i}$ with a > 0.

- 1- Determine the velocity vector knowing that v (t=0)= v_0 .
- 2- Determine the position vector \overrightarrow{OM} given that $x(t=0)=x_0$.
- 3- Check that: $v_f^2 v_i^2 = 2a(x x_0)$.

4- What is the condition that $\vec{a} \cdot \vec{v}$ so that the motion is uniformly accelerated and retarded?

Exercise 8

The differential of the vector \vec{r} , $d\vec{r} = d\vec{l} = dx\vec{i} + dy\vec{j} + dz\vec{k}$ can be expressed in cylindrical coordinates as $d\vec{r} = \frac{\partial \vec{r}}{\partial \rho} d\rho + \frac{\partial \vec{r}}{\partial \theta} d\theta + \frac{\partial \vec{r}}{\partial z} dz$.

- 1. Using the formulas for switching between the two coordinate systems, evaluate the vectors $\frac{\partial \vec{r}}{\partial \rho}$, $\frac{\partial \vec{r}}{\partial \theta}$ et $\frac{\partial \vec{r}}{\partial z}$.
- 2. Derive the unit vectors $\overrightarrow{U_{\rho}}$, $\overrightarrow{U_{\theta}}$ et $\overrightarrow{U_z}$ (cylindrical coordinates) as a function of \vec{i} , \vec{j} and \vec{k} (Cartesian coordinates), check that they are orthogonal.
- 3. Write $\vec{A} = 2x\vec{i} + y\vec{j} 2z\vec{k}$ in cylindrical coordinates.